

CMS Open Data Guide

!!! Warning
This guide is under construction

Welcome to the guide for CMS open data. This guide is brought to you by the CMS open data group, on a best-effort basis. All software and instructions are provided “as is”, without warranty of any kind. This is ongoing work and we appreciate your feedback and/or your help building this guide.

How to use this site

The lefthand tabs will help you navigate the site. If you click on each tab, it will expand to show further subsections. The sections will guide you through the main topics you will need to become familiar with to conduct an analysis using CMS Open Data. You’ll learn about the computing tools needed to deal with CMS open data and about CMSSW, which is the software used by CMS. You’ll also learn how to conduct a particle physics analysis.

The site’s philosophy

This site is thought as a navigation aid. The CMS Collaboration has built an extensive amount of documentation over the years. However, given the nature of our rapidly evolving research activities, this documentation is usually scattered around, which makes it difficult to navigate. The main goal of this guide, therefore, is to facilitate the usage of CMS open/legacy data by providing a structured set of instructions that agglutinate those pieces of information already available in other sites. In this sense, we do not pretend to copy every little piece of information and/or code, but to help you get to it and find your way around it.

For CMS open data the three main sources of documentation/information are:

	The CMS public Twiki pages [https://twiki.cern.ch/twiki/bin/view/CMSPublic/WebHome]. Particularly the workbook [https://twiki.cern.ch/twiki/bin/view/CMSPublic/WorkBook] and the software guide [https://twiki.cern.ch/twiki/bin/view/CMSPublic/SWGuide]

!!! Note
When accessing the CMS twiki pages we will usually point you to the most recent page. However, historical Twiki documentation, i.e., earlier revision of the pages, may provide more accurate information for open data that is already a few years old. One can access this historical archive by going to the bottom of any Twiki page, clicking on History and exploring the revisions closer to the open data release year.

	The CERN CMS Open Portal [http://opendata.cern.ch/search?experiment=CMS] pages. This portal is not exactly meant to archive documentation. It is mainly a repository for our open data. However, it does host important information that is not so easy to find. This guide will point you to the right pages.

	The CMSSW code [https://github.com/cms-sw/cmssw]. Although less conventional, exploring the CMSSW code could be a really good source of information. For instance, having hundreds of trigger bits, if the information from a specific module used in a specific trigger (with which data was taken) was needed, it would be impossible to document that explicitly in some guide. Instead, one can explore the code and easily find out the needed information. We will try to show you how it is done.

How to get help

The best way to get additional help is to visit our open data forum [https://opendata-forum.cern.ch/c/cms/6].

How to contribute or contact us

Please follow these [https://github.com/cernopendata/cms-opendata-guide#how-to-contribute] instructions if you would like to contribute.

If you find bugs or have suggestions or recommendations to improve this guide, please fill out an issue [https://github.com/cernopendata/cms-opendata-guide/issues] or contact us.

Index

About

This is the guide for CMS open data. All CMS instructional material is made available under the Creative Commons Attribution license [https://creativecommons.org/licenses/by/4.0/].
This guide is brought to you by the CMS open data group, on a best-effort basis. All software and instructions are provided “as is”, without warranty of any kind. This is ongoing work and we appreciate your feedback and/or your help building this guide.

Contributors

	Matt Bellis

	Edgar Carrera

	Kati Lassila-Perini

	Tibor Šimko

	Marco Vidal García

	Audrius Mecionis

	Anniina Kinnunen

	Allan Jales

Contact

Please contact us here.

FAQ

!!! Warning
This page is under construction

Frequently Asked Questions and other problems and issues
that have come up.

Possible subsections below

High-level questions

Why would I choose VirtualBox over docker? Why would I choose docker over VirtualBox?

Great question! Anyone?

Docker

Docker downloads container but never launches environment

This is an issue with newer OSs on your local laptop/desktop running older OSs in the container.

For example, suppose you are following the Running CMS analysis code using Docker [http://opendata.cern.ch/docs/cms-guide-docker]
tutorial. If you run

docker run --name opendata -it cmsopendata/cmssw_5_3_32 /bin/bash

and the container downloads but you don’t find yourself in the CMSSW_5_3_32 environment, then…

Data

CMSSW

QCD Estimation

!!! Warning
This page is under construction

Techniques

!!! Warning
This page is under construction

Collision Data

!!! Warning
This page is under construction

The CMS collision data is organized in primary datasets (PD).
All CMS open data primary datasets can be found with this search [http://opendata.cern.ch/search?page=1&size=20&type=Dataset&subtype=Collision&experiment=CMS].

The dataset name consists of three parts separated by “/”, e.g.:

/TauPlusX/Run2011A-12Oct2013-v1/AOD

The first part indicates the primary dataset contents (TauPlusX), the second part is the data-taking era (Run2011A) and reprocessing (12Oct2013), and the last one indicates the data format (AOD).

Dataset contents

The primary dataset definition is centered around physics objects (SingleMu, Jet, Tau etc).
Events triggered by High Level Triggers (HLT) with a similar physics contents or use
are mostly directed in the same PD. This guide [http://opendata.cern.ch/docs/cms-guide-trigger-system]
gives an overview of the CMS trigger system.
Besides requirements on the physics content, the organisation of the primary
datasets has to satisfy constraints related to the data processing and handling,
such as the average event rate approximately uniform across the
different PDs, and the event rate within a certain range.

Each CMS collision dataset comes with a brief description of the contents, and
the full listing of all possible HLT trigger streams included in the dataset.
The instructions how to find the exact definitions and parameters of the
HLT trigger definitions can be found in
Guide to the CMS Trigger System [http://opendata.cern.ch/docs/cms-guide-trigger-system] under “HLT Trigger Path definitions”.

Since a given event can pass more than one HLT path, it
can be included in more than one primary dataset.
There’s an overall overlap between the PDs of around 25-35% during Run1 and
it must be taken into account when combining events from different datasets in an analysis.

Data taking and reprocessing

One year of data taking is divided in several “eras” indicated as RunA, RunB, etc.
According to the CMS data policy, 50% of data is published after the embargo period,
completed with the full release within 10 years. For proton-proton data, currently available are

	Run2010A and Run2010B

	Run2011A and Run2011B

	Run2012A, Run2012B, Run2012C and Run2012D

	Run2015D

In addition, heavy-ion data from HIRun2010 and HIRun2011 are available.

The data are reprocessed several times, and it is the last complete reprocessing available at the time of the release which is made public.

Data format

The data format in use for Run1 data is Analysis Object Data (AOD). Starting from Run2, a slimmer version of this format called MINIAOD is used.
A brief description of data formats can be found in the introductory
About CMS [http://opendata.cern.ch/docs/about-cms] under “Primary and simulated datasets”.

References

G. Franzoni: Dataset definition for CMS operations and physics analyses
CR2014_311.pdf [https://cds.cern.ch/record/1976679/files/CR2014_311.pdf]

Event Generation

!!! Warning
This page is under construction

Physical event generation [https://twiki.cern.ch/twiki/bin/view/CMSPublic/WorkBookGeneration] and detector simulation are the first steps in producing Monte Carlo samples [http://opendata.cern.ch/docs/cms-mc-production-overview] suitable for physical analysis. Here we will teach you how to use the CMS datasets in the CERN Open Data Portal [http://opendata.cern.ch/] and the CMSSW [https://twiki.cern.ch/twiki/bin/view/CMSPublic/WorkBookCMSSWFramework] machinery for the generation of events in simple steps:

	Generation and Simulation: To simulate beam collisions.

	Triggers: To simulate the effect of the detectors and electronics.

	Reconstruction: For the reconstruction of the events in the collisions.

What you will find here:

	Virtual machines

	Dataset name

	System details

	Configuration files

	cmsDriver

	Generation from Matrix Element (ME) generators

	LHE

	Simulation

	High Level Trigger (HLT)

	Reconstruction

	Generation from general-purpose generators

	Generation and Simulation

	High Level Trigger (HLT)

	Reconstruction

	Example for event generation with 2011 CMSSW machinery

	Example for event generation with 2012 CMSSW machinery

[bookmark: virtual-machines]

Virtual machines

A specific CMS virtual machine includes the ROOT framework and CMSSW. Follow these instructions [http://opendata.cern.ch/docs/cms-virtual-machine-2011] to configure a CERN virtual machine on your computer to be used with the 2011 and 2012 CMS open data.

[bookmark: dataset-name]

Dataset name

When exploring a simulated dataset on the CERN Open Data Portal [http://opendata.cern.ch/], the first thing you will see is the name of the dataset. CMS uses the following naming convention [http://opendata.cern.ch/docs/cms-simulated-dataset-names]:

PROCESS_RANGETYPE-RANGELOWtoRANGEHIGH_FILTER_TUNE_COMMENT_COMENERGY-GENERATOR

Take as an example the name of record 12201 [http://opendata.cern.ch/record/12201]:

QCD_Pt-15to3000_TuneZ2star_Flat_8TeV_pythia6

[bookmark: system-details]

System details

In the record of each dataset, you can find the recommended global tag [http://opendata.cern.ch/docs/cms-guide-for-condition-database] and release for analysis (CMSSW is the data analysis library). A global tag stores additional data that is required by the reconstruction and analysis software. Take as an example section System details of record 12201 [http://opendata.cern.ch/record/12201]:

Recommended global tag for analysis: START53_V27
Recommended release for analysis: CMSSW_5_3_32

[bookmark: configuration-files]

Configuration files

The CMS software framework uses a software bus model, where data is stored in the event which is passed to a series of modules. A single executable, cmsRun, is used, and the modules are loaded at runtime. A configuration file [https://twiki.cern.ch/twiki/bin/view/CMSPublic/WorkBookConfigFileIntro] defines which modules are loaded, in which order they are run, and with which configurable parameters they are run.

You can find the configuration files for the generation of events for each dataset in its respective record within the CERN Open Data Portal [http://opendata.cern.ch/]. Check, for example, the section How were these data generated? of record 12201 [http://opendata.cern.ch/record/12201].

[bookmark: cmsdriver]

cmsDriver

The cmsDriver [https://twiki.cern.ch/twiki/bin/view/CMSPublic/SWGuideCmsDriver] is a tool to create production-solid configuration files from minimal command line options. Its code implementation, the cmsDriver.py [https://github.com/cms-sw/cmssw/blob/master/Configuration/Applications/scripts/cmsDriver.py] script, is part of the CMSSW software.

A summary of the cmsDriver.py script’s options with a detailed message about each one can be visualized by getting the help:

cmsDriver.py --help

[bookmark: matrix-element-generators]

Generation from Matrix Element (ME) generators

Generator-level datasets can be produced using a Matrix Element (ME) generator (e.g., Powheg [http://powhegbox.mib.infn.it/], MadGraph5_aMCatNLO [http://amcatnlo.web.cern.ch/amcatnlo/], Alpgen [http://mlm.home.cern.ch/mlm/alpgen/]) to deliver the event at the parton level and then a general-purpose generator to hadronise the event.

Here we will reproduce the steps in the generation of record 1352 [http://opendata.cern.ch/record/1352].

Guided by the system details specified in the dataset, you should start by setting up your run time environment:

cmsrel CMSSW_5_3_32
cd CMSSW_5_3_32/src/
cmsenv

We will create a package according to our dataset:

mkdir MyPackage
cd MyPackage
mkedanlzr MySim

[bookmark: me-lhe]

LHE

The Les Houches Event file format (LHE [https://twiki.cern.ch/twiki/bin/view/CMSPublic/SWGuideLHEInterface]) is an agreement between Monte Carlo event generators and theorists to define Matrix Element level event listings in a common language.

The LHE input file that store process and event information can be one generated by you or you can look for examples in /eos/cms/store/lhe/. Here we will use a file with events generated for record 1352 [http://opendata.cern.ch/record/1352]:

cmsDriver.py step1 --filein lhe:10270 --fileout file:LHE.root --mc --eventcontent LHE --datatier GEN --conditions START53_LV6A1::All --step NONE --python_filename LHE.py --no_exec --customise Configuration/DataProcessing/Utils.addMonitoring -n 3

Run the CMSSW executable:

cmsRun LHE.py

[bookmark: me-simulation]

Simulation

The next step is to generate fully hadronised events. We need to use the appropriate configuration file for this purpose. Take as an example the file in Step SIM for the simulation of record 1352 [http://opendata.cern.ch/record/1352]. The configuration file is in this link [http://uaf-10.t2.ucsd.edu/~phchang/analysis/generator/genproductions/python/SevenTeV/Hadronizer_TuneZ2_7TeV_generic_LHE_pythia_tauola_cff.py].

We add this file to our local area:

curl http://uaf-10.t2.ucsd.edu/~phchang/analysis/generator/genproductions/python/SevenTeV/Hadronizer_TuneZ2_7TeV_generic_LHE_pythia_tauola_cff.py -o MySim/python/mysim.py

Compile everything:

scram b

Execute the cmsDriver command as:

cmsDriver.py MyPackage/MySim/python/mysim.py --filein file:LHE.root --fileout file:sim.root --mc --eventcontent RAWSIM --customise SimG4Core/Application/reproc2011_2012_cff.customiseG4,Configuration/DataProcessing/Utils.addMonitoring --datatier GEN-SIM --conditions START53_LV6A1::All --beamspot Realistic7TeV2011CollisionV2 --step GEN,SIM --datamix NODATAMIXER --python_filename sim.py --no_exec -n 3

Run the CMSSW executable:

cmsRun sim.py

[bookmark: me-hlt]

High Level Trigger (HLT)

It is a crucial part of the CMS data flow since it is the HLT [https://twiki.cern.ch/twiki/bin/view/CMSPublic/WorkBookHLTTutorial] algorithms and filters which will decide whether an event should be kept for an offline analysis: any offline analysis depends on the outcome of HLT.

Execute the cmsDriver command as:

cmsDriver.py step1 --filein file:sim.root --fileout file:hlt.root --mc --eventcontent RAWSIM --runsScenarioForMC Run2012_AB_C_D_oneRunPerEra --datatier GEN-RAW --conditions START53_LV6A1::All --step DIGI,L1,DIGI2RAW,HLT:2011 --python_filename hlt.py --no_exec --customise Configuration/DataProcessing/Utils.addMonitoring -n 3

Now, run the CMSSW executable:

cmsRun hlt.py

[bookmark: me-reconstruction]

Reconstruction

The algorithms that make up the CMS event reconstruction [https://twiki.cern.ch/twiki/bin/view/CMSPublic/WorkBookReco] software build physics objects (e.g., muons, electrons, jets) from the raw data recorded by the detector. All events collected by the CMS trigger system are reconstructed by the CMS prompt reconstruction system soon after being collected.

Execute the cmsDriver command as:

cmsDriver.py step2 --filein file:hlt.root --fileout file:reco.root --mc --eventcontent AODSIM,DQM --datatier AODSIM,DQM --conditions START53_LV6A1::All --step RAW2DIGI,L1Reco,RECO,VALIDATION:validation_prod,DQM:DQMOfflinePOGMC --python_filename reco.py --no_exec --customise Configuration/DataProcessing/Utils.addMonitoring -n 3

Now, run the CMSSW executable:

cmsRun reco.py

You can start ROOT and type TBrowser t to explore the files that were created.

[bookmark: general-purpose-generators]

Generation from general-purpose generators

Generator-level datasets can be produced using a general-purpose generator (e.g., Pythia [http://home.thep.lu.se/~torbjorn/Pythia.html], Herwig [https://herwig.hepforge.org/], Tauola [https://tauolapp.web.cern.ch/tauolapp/]) to simulate the event and the hadronisation.

Here we will reproduce the steps in the generation of record 12201 [http://opendata.cern.ch/record/12201].

Guided by the system details specified in the dataset, you should start by setting up your run time environment:

cmsrel CMSSW_5_3_32
cd CMSSW_5_3_32/src/
cmsenv

We will create a package according to our dataset:

mkdir MyPackage
cd MyPackage
mkedanlzr MyGen

[bookmark: gp-generation-simulation]

Generation and Simulation

We need to use the appropriate configuration file. Take as an example the file in Step SIM for the generation and simulation of record 12201 [http://opendata.cern.ch/record/12201]. The configuration file is in this link [https://raw.githubusercontent.com/cms-sw/genproductions/master/python/EightTeV/QCD_Pt/QCD_Pt_15to3000_TuneZ2star_Flat_8TeV_pythia6_cff.py].

We add this file to our local area:

curl https://raw.githubusercontent.com/cms-sw/genproductions/master/python/EightTeV/QCD_Pt/QCD_Pt_15to3000_TuneZ2star_Flat_8TeV_pythia6_cff.py -o MyGen/python/mygen.py

Compile everything:

scram b

Execute the cmsDriver command as:

cmsDriver.py MyPackage/MyGen/python/mygen.py --fileout file:gen.root --mc --eventcontent RAWSIM --pileup NoPileUp --customise Configuration/StandardSequences/SimWithCastor_cff.customise,Configuration/DataProcessing/Utils.addMonitoring --datatier GEN-SIM --conditions START50_V13::All --beamspot Realistic8TeVCollision --step GEN,SIM --datamix NODATAMIXER --python_filename gen.py --no_exec -n 3

Run the CMSSW executable:

cmsRun gen.py

[bookmark: gp-hlt]

High Level Trigger (HLT)

Execute the cmsDriver command as:

cmsDriver.py step1 --filein file:gen.root --fileout file:hlt.root --pileup_input dbs:/MinBias_TuneZ2star_8TeV-pythia6/Summer12-START50_V13-v3/GEN-SIM --mc --eventcontent RAWSIM --runsScenarioForMC Run2012_AB_C_D_oneRunPerEra --pileup fromDB --datatier GEN-SIM-RAW --conditions START53_V7N::All --step DIGI,L1,DIGI2RAW,HLT:7E33v2 --python_filename hlt.py --no_exec --customise Configuration/DataProcessing/Utils.addMonitoring -n 3

In section How were these data generated? of the record, you can find the pile-up dataset. Additionally, you can manually add ROOT files to the hlt.py file for the pile-up configuration by looking at the list of ROOT files that were used in the Step HLT configuration file of the record you are studying. This involves, for instance, opening file hlt.py and replacing the line

process.mix.input.fileNames = cms.untracked.vstring([])

with

process.mix.input.fileNames = cms.untracked.vstring([
'root://eospublic.cern.ch//eos/opendata/cms/MonteCarlo2012/Summer12/MinBias_TuneZ2star_8TeV-pythia6/GEN-SIM/START50_V13-v3/0000/005825F1-F260-E111-BD97-003048C692DA.root',
'root://eospublic.cern.ch//eos/opendata/cms/MonteCarlo2012/Summer12/MinBias_TuneZ2star_8TeV-pythia6/GEN-SIM/START50_V13-v3/0000/003EEBD4-8061-E111-9A23-003048D437F2.root',
'root://eospublic.cern.ch//eos/opendata/cms/MonteCarlo2012/Summer12/MinBias_TuneZ2star_8TeV-pythia6/GEN-SIM/START50_V13-v3/0000/0005E496-3661-E111-B31E-003048F0E426.root'])

Now, run the CMSSW executable:

cmsRun hlt.py

[bookmark: gp-reconstruction]

Reconstruction

Execute the cmsDriver command as:

cmsDriver.py step2 --filein file:hlt.root --fileout file:reco.root --mc --eventcontent AODSIM,DQM --datatier AODSIM,DQM --conditions START53_V7N::All --step RAW2DIGI,L1Reco,RECO,VALIDATION:validation_prod,DQM:DQMOfflinePOGMC --python_filename reco.py --no_exec --customise Configuration/DataProcessing/Utils.addMonitoring -n 3

Now, run the CMSSW executable:

cmsRun reco.py

You can start ROOT and type TBrowser t to explore the files that were created.

[bookmark: 2011-cmssw]

Example for event generation with 2011 CMSSW machinery

In this example [https://github.com/cms-opendata-analyses/EventProductionExamplesTool/tree/2011], you will learn how to generate 2011 MC Drell-Yan events from scratch. A Drell-Yan process occurs when a quark and an antiquark annihilate, creating a virtual photon or Z boson, which then decays into a pair of oppositely charged leptons.

[bookmark: 2012-cmssw]

Example for event generation with 2012 CMSSW machinery

In this example [https://github.com/cms-opendata-analyses/EventProductionExamplesTool/tree/2012], you will learn how to generate 2012 MC QCD events, which involve the strong interaction between quarks and gluons. Additionally, you will know what are the steps to extract the tracking information of these events.

Monte Carlo Simulations

A set of simulated data (Monte Carlo - MC) corresponding to the collision data
is made available. All directly available MC datasets can be found with
this search [http://opendata.cern.ch/search?page=1&size=20&type=Dataset&subtype=Simulated&experiment=CMS].
For 2012 data taking, large amount of MC, thought to be of less frequent use, is available on demand
and included in search results [http://opendata.cern.ch/search?page=1&size=20&type=Dataset&experiment=CMS&subtype=Simulated&ondemand=True]
if “include on-demand datasets” option is selected.

MC dataset are searchable by categories [http://opendata.cern.ch/docs/simulated-dataset-categories],
which can be found under “Filter by category” on the left bar of the search page.

The dataset name consists of three parts separated by / e.g.:

/DYToMuMu_M-15To50_Tune4C_8TeV-pythia8/Summer12_DR53X-PU_S10_START53_V19-v1/AODSIM

The first part indicates the simulated physics process (DYToMuMu),
some of the production parameters (M-15To50_Tune4C), collision energy (8TeV),
and the event generator used in the processing chain. CMS simulated datasets names [http://opendata.cern.ch/docs/cms-simulated-dataset-names]
gives more details in the naming.
The second part is the production campaign (Summer12_DR53X), pile-up [http://opendata.cern.ch/docs/cms-guide-pileup-simulation]
profile (PU_S10) and processing conditions [http://opendata.cern.ch/docs/cms-guide-for-condition-database] (START53_V19),
and the last one indicates the data format (AODSIM).

Dataset contents

The dataset naming reflects the contents of the dataset, and the actual generator parameters
with which the dataset contents have been defined can be
found as explained under “Finding the generator parameters” in the
CMS Monte Carlo production overview [http://opendata.cern.ch/docs/cms-mc-production-overview].

Processing

CMS Monte Carlo production overview [http://opendata.cern.ch/docs/cms-mc-production-overview]
briefly describes the steps in the MC production chain.

Data format

The data format in use for Run1 MC data is Analysis Object Data (AODSIM). Starting from Run2, a slimmer version of this format called MINIAODSIM is used.
A brief description of data formats can be found in the
introductory About CMS [http://opendata.cern.ch/docs/about-cms] under “Primary and simulated datasets”.

Cross section calculation

Cross sections can be calculated for MC samples.

Caveat: The cross-sections found with this tool are those predicted by the respective generators. There may be better estimates, coming from dedicated task forces, theory papers etc.

To account for the different running conditions in Run 1 vs Run 2, click the appropriate tab below for Run 1 vs Run 2 data.

=== “Run 1 Data”

* This page is under construction

=== “Run 2 Data”

* First, fetch a CMSSW image and start a container. You can find a list of Docker container images available for CMS open data in the [guide page for CMS open data containers](http://opendata.cern.ch/docs/cms-guide-docker). A tutorial on working with docker is at [CMS open data containers](https://cms-opendata-workshop.github.io/workshop2022-lesson-docker/). After you start your container, you will need the file ana.py, which you can access by curl

``` bash
curl https://raw.githubusercontent.com/cms-sw/genproductions/master/Utilities/calculateXSectionAndFilterEfficiency/genXsec_cfg.py -o ana.py
```

* Next, you'll calculate a cross-section for a root file. You can identify the address of your root file by navigating to the CERN open data record. When you click the Download button at the bottom of the page, you'll get a printout of the path to your file. For example, a simulated dataset is available at [Simulated dataset TGJets_TuneCUETP8M1_13TeV_amcatnlo_madspin_pythia8 in MINIAODSIM format for 2015 collision data](http://opendata.cern.ch/record/19924). After clicking the Download button at the button of the page, you will be brought [here](http://opendata.cern.ch/record/19924/files/CMS_mc_RunIIFall15MiniAODv2_TGJets_TuneCUETP8M1_13TeV_amcatnlo_madspin_pythia8_MINIAODSIM_PU25nsData2015v1_76X_mcRun2_asymptotic_v12-v1_00000_file_index.txt), and you can copy the path of your file/files of interest to use to compute your cross-section.

* To compute a cross-section using one of the above files, type

```bash
cmsRun ana.py inputFiles="root://eospublic.cern.ch//eos/opendata/cms/mc/RunIIFall15MiniAODv2/TGJets_TuneCUETP8M1_13TeV_amcatnlo_madspin_pythia8/MINIAODSIM/PU25nsData2015v1_76X_mcRun2_asymptotic_v12-v1/00000/1A454199-F8B8-E511-A55D-7845C4FC374C.root" maxEvents=-1
```

* Caveat: in the above method, you directly access the file from your container. If instead your files are on your local system and you plan to copy them to your container to use them, note that you must modify the syntax to: `cmsRun ana.py inputFiles="file:xxxx.root" maxEvents=-1` You must use the syntax "file:" before your root file name. For example, if your root file is called ttbar.root, you would type `cmsRun ana.py inputFiles="file:ttbar.root" maxEvents=-1`

* After running the above commands, you will get a log file. A sample printout is below and also available [here](https://github.com/cernopendata/cms-opendata-guide/blob/master/docs/images/crossSectionLog.png):
![cross-section](../../images/crossSectionZoom.png)

* A cross-section summary will be printed out. The definition of each quantity is:

 * Before matching: the cross section before jet matching and any filter
 * After matching: the cross section after jet matching BUT before any filter
 * Filter efficiency: the efficiency of the any filter.
 * After filter: the cross section after jet matching and additional filter are applied. This is your final cross section.

Cross section calculation

!!! Warning
This page is under construction

Cross sections can be calculated for MC samples.

To account for the different running conditions in Run 1 vs Run 2, click the appropriate tab below for Run 1 vs Run 2 data.

=== “Run 1 Data”

* This page is under construction

=== “Run 2 Data”

* You can calculate a cross section using the GenXSecAnalyzer. To use it, you will need the file ana.py, which you can get by `curl https://raw.githubusercontent.com/cms-sw/genproductions/master/Utilities/calculateXSectionAndFilterEfficiency/genXsec_cfg.py -o ana.py `

* Next, fetch a CMSSW image and start a container. You can find a list of Docker container images available for CMS open data in the [guide page for CMS open data containers](http://opendata.cern.ch/docs/cms-guide-docker). A tutorial on working with docker is at [CMS open data containers](https://cms-opendata-workshop.github.io/workshop2022-lesson-docker/). If you named your container `my_od`, you can fetch and start it by

``` bash

docker start -i my_od

cd CMSSW_7_6_7/src

```

* Then, copy the file ana.py to your container.

``` bash

curl https://raw.githubusercontent.com/cms-sw/genproductions/master/Utilities/calculateXSectionAndFilterEfficiency/genXsec_cfg.py -o ana.py

```

* To compute the cross-section, type `cmsRun ana.py inputFiles="file:xxxx.root" maxEvents=-1` in case you have copied one file locally or `cmsRun ana.py inputFiles="root://eospublic.cern.ch//eos/opendata/cms/mc/[....].root" maxEvents=-1` if you access the file through xrootd protocol from the CERN Open data portal. For example:

``` bash

cmsRun ana.py inputFiles="root://eospublic.cern.ch//eos/opendata/cms/mc/RunIIFall15MiniAODv2/TGJets_TuneCUETP8M1_13TeV_amcatnlo_madspin_pythia8/MINIAODSIM/PU25nsData2015v1_76X_mcRun2_asymptotic_v12-v1/00000/1A454199-F8B8-E511-A55D-7845C4FC374C.root" maxEvents=-1

```

* After running the above commands, you will get a log file.

* A cross-section summary will be printed out. The definition of each quantity is:

 * Before matching: the cross section before jet matching and any filter
 * After matching: the cross section after jet matching BUT before any filter
 * Filter efficiency: the efficiency of the any filter.
 * After filter: the cross section after jet matching and additional filter are applied. This is your final cross section.

* You can use any CMS Run2 Open Data MC sample for testing, the example above is from [Simulated dataset TGJets_TuneCUETP8M1_13TeV_amcatnlo_madspin_pythia8 in MINIAODSIM format for 2015 collision data](http://opendata.cern.ch/record/19924).

Upper-limit calculations

!!! Warning
This page is under construction

Statistics

!!! Warning
This page is under construction

Luminosity

!!! Warning
This page is under construction

Triggers

!!! Warning
This page is under construction

Validated Runs

Data recorded by CMS go through a validation process and are certified as good for physics analysis if all subdetectors, trigger, lumi and physics objects (tracking, electron, muon, photon, jet and MET) show the expected performance.

Lists of validated runs and luminosity sections [http://opendata.cern.ch/search?page=1&size=20&type=Environment&subtype=Validation&experiment=CMS] (the smallest unit of data taking, 23 seconds) are provided on the CERN open data portal.

They are of format

{
 "<run number>":
 [
 [
 <first certified luminosity section in a range>,
 <last certified luminosity section in a range>
],
 ..

for example:

{"190645": [[10, 110]], "190646": [[1, 111]], "190659": [[33, 167]], "190679": [[1, 55]],
 "190688": [[69, 249]], "190702": [[51, 53], [55, 122], [124, 169]], "190703": [[1, 252]],
 "190704": [[1, 3]], ...

Each CMS open data record has a link to the corresponding list of validated runs, and it must be applied to all analyses. Most code examples expect that this list is downloaded to the working directory. In a CMSSW job, the filtering based on this list is applied by adding the following lines in the configuration file of the job

 import FWCore.ParameterSet.Config as cms
 import FWCore.PythonUtilities.LumiList as LumiList
 goodJSON = '<file name here>'
 myLumis = LumiList.LumiList(filename = goodJSON).getCMSSWString().split(',')

and by adding these two lines after the process.source input file definition:

 process.source.lumisToProcess = cms.untracked.VLuminosityBlockRange()
 process.source.lumisToProcess.extend(myLumis)

This list should also be used as an input to the luminosity calculation.

Signal Extraction

Detector reconstruction efficiencies are calculated using signal muons, that is, only true candidates decaying to dimuons. This is achieved in this study by extracting signal from the data by the usage of some methods. Here it is presented two: sideband subtraction and fitting.

Sideband subtraction method

The sideband subtraction method involves choosing sideband and signal regions in invariant mass distribution for each tag+probe pair. The signal region is selected by finding the ressonance position and defining a region around it. While the signal region contains both signal and background, the sideband region is chosen such as to have only background, with a distance from signal region. A example of those regions selection can be seen below for the J/ψ ressonance.

[image: ../../../_images/InvariantMass_Tracker_region.svg]Efficiency equation

For each event category (i.e. Pass and All), and for a given variable of interest (e.g., the probe pT), two distributions are obtained, one for each region (Signal and Sideband). In order to obtain the variable distribution for the signal only, we proceed by subtracting the Background distribution (Sideband region) from the Signal+Background one (Signal region):

[image: ../../../_images/subtraction.svg]Sideband Subtraction equation

Where the normalization α factor quantifies the quantity of background present in the signal region:

[image: ../../../_images/alpha.svg]Alpha factor equation

And for the uncertainty:

[image: ../../../_images/subtraction_error.svg]Sideband Subtraction errors equation

Applying those equations we get histograms like this:

[image: ../../../_images/Tracker_Probe_Pt_All.svg]Tracker Muon Probe distribution

	Solid blue line (Total) = particles in signal region;

	Dashed blue line (Background) = particles in sideband regions;

	Solid magenta line (signal) = signal histogram subtracted.

Fitting method

In this method, the signal is extracted not by histogram manipulation but by likelihood fitting. The procedure is applied after splitting the data in sub-samples, corresponding to bins of the kinematic variable of interest of the probe objects. As such, the efficiency will be measured as a function of that variable. Each sub-sample contains signal and background events; the signal is accessed by fitting the invariant mass spectra

The fit for each bin allows to statistically discriminate between signal and background. In particular, the fit yields the number of signal events. The efficiency is finally obtained by simply forming the ratio of the signal yield from the fit to the passing category by the signal yield from the fit of the inclusive all category. This approach is illustrated below.

[image: ../../../_images/fitting_method_large.png]Efficiency equation

Tag and Probe

The Tag and Probe method is an experimental procedure commonly used in particle physics that allows to measure a process’ efficiency directly from data. The procedure provides an unbiased sample of probe objects that can be then used to measure the efficiency of a particular selection criteria.

Tag and Probe method

This method is a data-driven technique and it is based on decays of known ressonances in pair of particles. The decaying muons are labeled according to the following criteria:

	Tag muon: well identified, triggered muon (tight selection criteria).

	Probe muon: unbiased set of muon candidates (very loose selection criteria), either passing or failing the criteria for which the eciency is to be measured.

Tag muon are employed to trigger the presence of a resonance decay while probe muons, paired to tag muons, will be used for getting efficiency due its’ unbiased characteristic.

CMS Efficiency

The efficiency will be given by the fraction of probe muons that pass a given criteria (in this case, the Muon ID which is explained below):

[image: ../../../_images/efficiency.svg]Efficiency equation

The denominator corresponds to the number of resonance candidates (tag+probe pairs) reconstructed in the dataset. The numerator corresponds to the subset for which the probe passes the criteria.

CMS Muon identification and reconstruction

In the standard CMS reconstruction for proton-proton collisions, tracks are first reconstructed independently in the inner tracker and in the muon system. Based on these objects, three reconstruction approaches are used:

	Tracker Muon reconstruction: all tracker tracks with pT > 0.5 GeV/c and total momentum p > 2.5 GeV/c are considered as possible muon candidates, and are extrapolated to the muon system taking into account the magnetic field;

	Standalone Muon reconstruction: all tracks of the segments reconstructed in the muon chambers (performed using segments and hits from Drift Tubes in the barrel region, Cathode Strip Chambers and Resistive Plates Chambers in the endcaps) are used to generate “seeds” consisting of position and direction vectors and an estimate of the muon transverse momentum;

	Global Muon reconstruction: starts from a Standalone reconstructed muon track and extrapolates its trajectory from the innermost muon station through the coil and both calorimeters to the outer tracker surface.

These are illustrated below:

[image: ../../../_images/muons_id.png]Muons identification

!!! Note
You can find more details concerning CMS Muon Identification and reconstruction in this paper JINST 7 (2012) P10002 [https://doi.org/10.1088/1748-0221/7/10/P10002].

Overview of fitting method

The fitting method folder is structured in folders and main files. Main files are those ones that are used to run the most important codes. Below is a list of folders presented in this method and the files encontered here. It is important to note that this code has been tested on root 6.22/00.

Fitting method folder structure

The folders contained in fitting method are described below.

Folder	Purpose
—————	———————————————————————————————
📂 DATA	Where .root with data should be placed for measuring efficiency
📂 src	Where important files related to main code are keeped
└ 📂 dofits	Here it keeps files that are responsible to do the fitting over invariant masses histograms
📂 tests	Some teste made during the development of this tool
📂 results	This folder stores the results output and it is created when any code finnish running

Main files

There are six main files in the fitting method. For simple results like the ones obtained in sideband subtraction method the file used is efficiency.cpp.

Main files are explained below.

📄 simplify_data.cpp

The simplify_data.cpp file, as the name sugest, simplify a DATA file obtained from this Tag and Probe tool. It is necessary to simplify due RooFit limitations where fitting method codes here used are based on.

There are two lines responsable for input and output file:

TFile *file0 = TFile::Open("INPUT_FILE_PATH.root");

TFile *fileIO = TFile::Open("OUTPUT_FILE_PATH.root","RECREATE");

Every user should run this code firstly to simplify .root files in order to use it in fitting method.

The input files here are provenient from the main Tag and Probe tool in this repository. If you want to get a new ntuple, you should run it.

📄 efficiency.cpp

This file is responsible to measure the efficiency simple by fitting method as described in this fitting method section.

Choosing ressonance

Here it include the file that is responsible to fit the ressonance and return the yield obtained with error.

//Change if you need
#include "src/dofits/DoFit_Jpsi_Run.h"

By default out tool keeps all ressonance fit in the folder src/dofits. There are some example there for specific ressonances and fits.

There are two main parameters to control this code.

//Which Muon Id do you want to study?
string MuonId = "trackerMuon";

The string MuonId supports "trackerMuon", "standaloneMuon" and "globalMuon" values.

//Which quantity do you want to use?
string quantity = "Pt"; double bins[] = {0., 2.0, 3.4, 4.0, 4.4, 4.7, 5.0, 5.6, 5.8, 6.0, 6.2, 6.4, 6.6, 6.8, 7.3, 9.5, 13.0, 17.0, 40.};

string quantity supports "Pt", "Eta" and "Phi" values.

double bins[] is used to set histogram bins limits. In the example above, the first bin is [0., 2.), the second is [2., 4.) and so on.

Output

There are two output folders in this file by default. They are defined in those lines of code:

//Path where is going to save results png for every bin
const char* path_bins_fit_folder = "results/bins_fit/efficiency/";

path_bins_fit_folder refers to the path where each individual fit of bins will be stored as .png. In this folder you can find every fit made in this method.

//Path where is going to save efficiency
string directoryToSave = string("results/efficiencies/efficiency/") + output_folder_name + string("/");

The directoryToSave stores the path to save the efficiency result. It is saved as a .root file containing passing and total histograms as well the efficiency result histogram.

Informations about the output is printed at end of running.

📄 loop_over_efficiencies.cpp

The purpose of this code is rerun the efficiency.cpp for differents configurations. This code is not recommended for systematic calculations indeed and it was firstly created for systematic studies only.

The importants variables to keep in mind are listed below

Type	Name	Purpose
——–	———————-	———-
double	default_min	the minimum invariant mass window postion
double	default_max	the maximum invariant mass window postion
bool	should_loop_muon_id	if true, it loops over all muons id (tracking, standalone, global)
bool	should_loop_settings	if true, it loops over all settings presented in set_settings() function
int	setting	if should_loop_settings is false, it uses only this setting number
bool	exactly	This only affect the name of output plots inside .root. Its recommended to keep it set to false

set_settings(…)

It is one of four functions presented in this code. Its is called by:

void set_settings(int index, bool exactly = false)

Inside this function are preset settings that this file runs over. Each setting is associated with a number here named as index. This function is responsible to set the index configuration to the efficiency for running the efficiency.cpp file.

loop_settings()

void loop_settings()

If should_loop_muon_id is true, this function is called. It loops over all muon ids: tracking, standalone, global.

loop_muon_id()

void loop_muon_id()

If should_loop_settings is true, this function is called. It loops over all settings preset in set_settings(...) function.

loop_over_efficiencies()

void loop_over_efficiencies()

It is the main function of this file. It is the function which calls every other function when it is needed.

📄 plot_sys_efficiency.cpp

The plot_sys_efficiency.cpp code creates a single .root with variations made. Unlike the previous code, the loop_over_efficiencies.cpp, that makes each source of uncertainty be in a separate .root, this one puts all of them in a single .root. This code has been further optimized than his precursor and also as a differential it already calculates the systematic uncertainty. Below it is specified main variables used in this code.

//Which Muon Id do you want to study?
string MuonId = "trackerMuon";

The string MuonId supports "trackerMuon", "standaloneMuon" and "globalMuon" values.

//Which quantity do you want to use?
string quantity = "Pt"; double bins[] = {0., 2.0, 3.4, 4.0, 4.4, 4.7, 5.0, 5.6, 5.8, 6.0, 6.2, 6.4, 6.6, 6.8, 7.3, 9.5, 13.0, 17.0, 40.};

string quantity supports "Pt", "Eta" and "Phi" values.

double bins[] is used to set histogram bins limits. In the example above, the first bin is [0., 2.), the second is [2., 4.) and so on.

Inside plot_sys_efficiency(), there is some useful variables too:

Type	Name	Purpose
——–	———————-	———-
string	path_bins_fit_folder	Stores the path to the output folder where .png of fit for each bin made will be
string	directoryToSave	Stores the path to output file

📄 overplot_efficiencies.cpp

The overplot_efficiencies.cpp code will take the results of the previous topic and make a single graph containing all its variations and will output a .png containing the graph.

All main variables in this file are in overplot_efficiencies() function

Type	Name	Purpose
————-	———————-	———-
const char*	input_folder_name	Stores the path to input folder where .root is
const char*	output_folder_name	Stores the path to output folder
string	MuonId	It accepts values of "trackerMuon", "standaloneMuon" and "globalMuon"
string	quantity	It accepts values of "Pt", "Eta" and "Phi"

Remeber when selecting MuonId and quantity to run plot_sys_efficiency.cpp before with same configurations.

📄 plot_sys_efficiency_2d.cpp

In order to calculate systematic uncertainties in 2D, it was necessary to create another code: the plot_sys_efficiency_2d.cpp. It has a .root output containing the efficiency histograms that can be viewed through the new TBrowser on root command.

The variables in this file is shown below:

Type	Name	Purpose
————-	———————-	———-
string	MuonId	It accepts values of "trackerMuon", "standaloneMuon" and "globalMuon"
string	xquantity	It accepts values of "Pt", "Eta" and "Phi" for horizontal axis
double[]	xbins	is used to set histogram bins limits for horizontal axis
string	yquantity	It accepts values of "Pt", "Eta" and "Phi" for vertical axis
double[]	ybins	is used to set histogram bins limits for vertical axis
string	path_bins_fit_folder	Stores the path folder where is going to save fit results png for every bin
const char*	output_folder_name	Stores the path to output folder where is going to save the 2D efficiency result

Src files

In this section there is a brief explanation for each file in src/ folder. In general, this files are headers called by main files defined on the section Overview.

📄 create_TH2D.h

TH2D* create_TH2D(const char* name, const char* title, string xquantity, string yquantity, int nbinsx, int nbinsy,
 double* xbins, double* ybins)

Create a empty TH2D histogram according xquantity and yquantity variables. these varibles supports "Pt", "Eta" and "Phi" values.

📄 create_folder.h

void create_folder(const char* folderPath, bool deleteOld = false)

This function creates folder path recursively. If deleteOld is true, it deleted the old folder if the path already exists.

📄 get_efficiency.h

TEfficiency* get_efficiency(TH1D* all, TH1D* pass, string quantity, string MuonId, string prefix_name = "", bool shouldWrite = false)

Function used to calculate the efficiency. The MuonId, quantity and prefix_name are used to set the name and title of TEfficiency*. If shouldWrite is true, it writes the result in any root file opened.

📄 get_efficiency_2D.h

TEfficiency* get_efficiency_2D(TH2D* all, TH2D* pass, string xquantity, string yquantity, string MuonId, string prefix_name = "", bool shouldWrite = false)

Function used to calculate the 2D efficiency. The MuonId, xquantity, yquantity and prefix_name are used to set the name and title of TEfficiency*. If shouldWrite is true, it writes the result in any root file opened.

📄 get_efficiency_TH2D.h

TH2D* get_efficiency_TH2D(TH2D* hall, TH2D* hpass, string xquantity, string yquantity, string MuonId, string prefix_name = "")

Function used to calculate the 2D efficiency. The MuonId, xquantity, yquantity and prefix_name are used to set the name and title of TEfficiency*. If shouldWrite is true, it writes the result in any root file opened.

Same function idea as TEfficiency* get_efficiency_2D(...), but it creates a TH2D objects instead which allows better control of uncertainty calculus.

📄 make_TH1D.h

TH1D* make_TH1D(string name, double** values, int index, double* bins, int nbins, string quantity = "", bool draw = false)

Creates TH1D* histogram direclty from values which stores doFit’s outputs.

	int index is related with the information above: 0 means all histogram and 1 means pass histogram. Choose the number due the histogram you are looking to make.

	double* bins is used to set histogram bins limits.

	int nbins represents the number of bins in double* bins.

	string quantity supports "Pt", "Eta" and "Phi" values.

	If bool draw it draws the plot on screen.

📄 yields_n_errs_to_TH2Ds_bin.h

void yields_n_errs_to_TH2Ds_bin(TH2D* hist2d_all, TH2D* hist2d_pass, int x, int y, double* yields_n_errs)

This function fills hist2d_all and hist2d_pass histogram in cell (x,y) with yields_n_errs which is a output from doFit functions.

📂 dofits

Here is stored functions that measures the yields and errors from each bin fit.

The return from each function follows this structure: [yield_all, yield_pass, error_all, error_pass].

Functions in this files are defined by:

double* doFit(string condition, string MuonId, const char* savePath = NULL)

	string condition selects the bin conditions.

	string MuonId supports "trackerMuon", "standaloneMuon" and "globalMuon" values.

	const char* savePath where the fit output file from the fit will be saved for further checks.

class FitFunctions

This class hold all fit functions for histograms.

class FitFunctions::Primary

This class is holding primary fit functions for histograms.

Content list

	double Gaus(…)

	double Pol1(…)

	double Exp(…)

	double CrystalBall(…)

Functions details

Gaus(…)

static double Gaus(double *x, double *par)

Parameters:

par = [height, position, sigma]

Pol1(…)

static double Pol1(double *x, double *par)

Parameters:

par = [b, a]

Pol3(…)

static double Pol3(double *x, double *par)

Parameters:

par = [d, c, b, a]

Exp(…)

static double Exp(double *x, double *par)

Parameters:

par = [height, width]

CrystalBall(…)

static double CrystalBall(double *x, double *par)

Parameters:

par = [alpha, n, mean, sigma, yield]

class FitFunctions::Merged

This class holds merged fit functions for histograms.

Content list

	double Jpsi::Signal_InvariantMass()

	double Jpsi::Background_InvariantMass()

	double Jpsi::InvariantMass()

	double Upsilon::Signal_InvariantMass()

	double Upsilon::Background_InvariantMass()

	double Upsilon::InvariantMass()

Functions details

Jpsi::Signal_InvariantMass(…)

static double Signal_InvariantMass(double *x, double *par)

Form:

Gaus
+
CrystalBall

Parameters:

par = [height, position, sigma, alpha, n, mean, sigma, yield]

Jpsi::Background_InvariantMass(…)

static double Background_InvariantMass(double *x, double *par)

Form:

Exp

Parameters:

par = [b, a]

Jpsi::InvariantMass(…)

static double Signal_InvariantMass(double *x, double *par) + Background_InvariantMass(double *x, double *par)

Form:

Gaus
+
CrystalBall
+
Exp

Parameters:

par = [height1, position1, sigma1, alpha2, n2, mean2, sigma2, yield2, b, a]

Upsilon::Signal_InvariantMass(…)

static double Signal_InvariantMass(double *x, double *par)

Form:

CrystalBall
+
Gaus
+
Gaus

Parameters:

par = [alpha1, n1, mean1, sigma1, yield1, height2, position2, sigma2, height3, position3, sigma3]

Upsilon::Background_InvariantMass(…)

static double Background_InvariantMass(double *x, double *par)

Form:

Pol3

Parameters:

par = [d, c, b, a]

Upsilon::InvariantMass(…)

static double Signal_InvariantMass(double *x, double *par) + Background_InvariantMass(double *x, double *par)

Form:

CrystalBall
+
Gaus
+
Gaus
+
Pol3

Parameters:

par = [alpha1, n1, mean1, sigma1, yield1, height2, position2, sigma2, height3, position3, sigma3, d, c, b, a]

class InvariantMass

Holds MassValues struct.

Constructor details

InvariantMass(
 const char*& resonance,
 const char*& particleName,
 const char*& canvasWatermark,
 const char*& directoryToSave,
 const char*& particleType)
 : resonance(resonance),
 particleName(particleName),
 canvasWatermark(canvasWatermark),
 directoryToSave(directoryToSave),
 particleType(particleType)
{
 if (strcmp(resonance, "Jpsi") == 0)
 {
 xMin = 2.9;
 xMax = 3.3;
 nBins = 160;
 }

 if (strcmp(resonance, "Upsilon") == 0)
 {
 xMin = 8.7;
 xMax = 11.;
 nBins = 60;
 }

 if (strcmp(resonance, "Upsilon1S") == 0)
 {
 xMin = 8.7;
 xMax = 11.;
 nBins = 60;
 }

 createMassHistogram(Pass.hMass, "Passing");
 createMassHistogram(All. hMass, "All");
}

Private variable details

Summary

Type	Name
—————-	———————-
const char*&	resonance
const char*&	particleName
const char*&	canvasWatermark
const char*&	directoryToSave
const char*&	particleType

All variables here are reference for public variables in mother class: Type class

Private Functions details

createMassHistogram(…)

void createMassHistogram(TH1D* &hMass,
 const char* PassingOrFailing)

Create invariant mass histogram with a specific title. The argument hMass is a pointer where the histogram shall be stored.

drawCanvasQuarter(…)

void drawCanvasQuarter(TCanvas* &canvas,
 bool drawRegions,
 int quarter,
 MassValues* ObjMassValues,
 int color = kBlue)

Draw a quarter of whole canvas with invariant mass histogram pointed.

Public variable details

Summary

Type	Name	Default value
————–	———————-	—————
double	xMin	0.
double	xMax	0.
int	nBins	0
int	decimals	3

Constructed objects

	MassValues Pass

	Stores information about passing mass histograms.

	MassValues All

	Stores information about passing mass histograms.

Public Functions details

createMassCanvas(…)

TCanvas* createMassCanvas(bool drawRegions = false,
 bool shouldWrite = false,
 bool shouldSavePNG = false)

Create canvas for invariant mass (passing and all muons).

defineMassHistogramNumbers()

void defineMassHistogramNumbers(int nBins,
 double xMin,
 double xMax,
 int decimals = 3)

Redefine number parameters of mass histograms in Mass object.

doFit()

void doFit()

Apply a fit over invariant mass in MassValues objects.

fillMassHistograms(…)

void fillMassHistograms(double** quantities,
 int** types)

Automatically fill masses histograms. Needs to be called in a loop over all dataset.

updateMassValuesAll()

void updateMassValuesAll()

After fill invariant mass histogram, you need to set signal regions and sideband regions. This function will set it for you.

updateMassValuesAll(…)

void updateMassValuesFor(MassValues* ObjMassValues,
 bool isAll = false)

After fill invariant mass histograms, you need to set signal regions and sideband regions. This function will set it for you.

writeMassHistogramsOnFile(…)

void writeMassHistogramsOnFile(bool writehPass,
 bool writehAll)

Write all mass canvas histograms in a root file. Just need to call this function and all mass histograms will be written.

struct MassValues

Holds informations about passing or all particles fit.

Public variable details

Summary

Type	Name	Default value
—————	———————-	—————
TH1D*	hMass	NULL
TF1*	fitFunction	NULL
TF1*	fitSignal	NULL
TF1*	fitBackground	NULL
double	sidebandRegion1_x1	0.
double	sidebandRegion1_x2	0.
double	signalRegion_x1	0.
double	signalRegion_x2	0.
double	sidebandRegion2_x1	0.
double	sidebandRegion2_x2	0.
TFitResultPtr	fitResult	0

Public Functions details

createTBox(…)

TBox* createTBox(double Ymax,
 int index = 0,
 double Ymin = 0.)

Return TBox of sideband or signal region.

	if index = -1 return TBox representing left sideband region.

	if index = 0 return TBox representing signal region.

	if index = 1 return TBox representing right sideband region.

doFitJpsi()

void doFitJpsi()

Do fit for J/psi resonance.

doFitUpsilon()

void doFitUpsilon()

Do fit for Upsilon resonance with 3 resonances peaks (1S, 2S, 3S).

doFitUpsilon1S()

void doFitUpsilon1S()

Do fit for Upsilon (1S) resonance.

isInSidebandRegion(…)

bool isInSidebandRegion(double InvariantMass)

Check if InvariantMass is in sideband region.

isInSignalRegion(…)

bool isInSignalRegion(double InvariantMass)

Check if InvariantMass is in signal region.

subtractionFactor()

double subtractionFactor()

Get the subtraction factor calculated by the ratio between yield of background particles in signal region by yield of background particles in sideband region. This yield is get by the integral of function stored in fitBackground variable.

class PassingFailing

Holds histograms of passing and all particle quantities.

Constructor details

PassingFailing(
 const char*& resonance,
 const char*& particleName,
 const char*& canvasWatermark,
 const char*& directoryToSave,
 const char*& particleType,
 InvariantMass& ObjMass,
 const char*& tagOrProbe,
 const char* passingOrFailing,
 const char*& quantityName,
 const char*& xAxisName,
 const char*& quantityUnit,
 const char*& extendedQuantityName,
 double& xMin,
 double& xMax,
 int& nBins,
 int& decimals)
 : resonance(resonance),
 particleName(particleName),
 canvasWatermark(canvasWatermark),
 directoryToSave(directoryToSave),
 particleType(particleType),
 ObjMass(ObjMass),
 tagOrProbe(tagOrProbe),
 passingOrFailing(passingOrFailing),
 quantityName(quantityName),
 xAxisName(xAxisName),
 quantityUnit(quantityUnit),
 extendedQuantityName(extendedQuantityName),
 nBins(nBins),
 xMin(xMin),
 xMax(xMax),
 decimals(decimals)
{
 createHistogram(hSigBack, "SigBack");
 createHistogram(hSig, "Sig");
 createHistogram(hBack, "Back");
}

Private variable details

Summary

Type	Name
—————-	———————-
const char*&	resonance
const char*&	particleName
const char*&	canvasWatermark
const char*&	directoryToSave
const char*&	particleType
const char*&	tagOrProbe
InvariantMass&	ObjMass
const char*&	tagOrProbe
const char*&	xAxisName
const char*&	quantityUnit
const char*&	extendedQuantityName
double&	xMin
double&	xMax
int&	nBins
int&	decimals

All variables here are reference for public variables in mother class: PtEtaPhi class.

Private Functions details

createHistogram()

void createHistogram()

Create quantity histogram.

fillAfter()

string fillAfter(string text,
 char fillWith,
 int targetLength)

Fill blank space of a string. It is used in consistencyDebugCout().

Public variable details

Summary

Type	Name	Default value
————–	———————-	—————
const char*	passingOrFailing	NULL
TH1D*	hSigBack	NULL
TH1D*	hSig	NULL
TH1D*	hBack	NULL

Details

	const char* passingOrFailing

	Set if it is “Passing” or “All” object.

	TH1D* hSigBack

	Stores the histogram for particles in signal region.

	TH1D* hSig

	Stores the subtracted histogram.

	TH1D* hBack

	Stores the histogram for particles in sideband region.

Public Functions details

consistencyDebugCout()

void consistencyDebugCout()

Print on terminal the consistency check after subtractSigHistogram().

It is result for this equation:

[image: ../../../../_images/consistencyDebugCout.svg]N_{total} - (\alpha N_{background} + N_{signal})

Where: alpha = yield of background particles signal region / yield of background particles sideband region

createQuantitiesCanvas(…)

TCanvas* createQuantitiesCanvas(bool shouldWrite = false,
 bool shouldSavePNG = false)

Create canvas for all quantities after subtractSigHistograms().

fillQuantitiesHistograms(…)

void fillQuantitiesHistograms(double& InvariantMass,
 int& isPassing)

Automatically fill all quantities histograms. Needs to be called in a loop over all dataset.

normalizeHistograms()

void normalizeHistograms()

Normalize quantities histograms of variable bin after filling it.

PassFailObj()

MassValues* PassFailObj()

Get the MassValue object of corresponding MassValue object.

subtractSigHistogram()

void subtractSigHistogram()

Apply sideband subtraction over histograms.

writeQuantitiesHistogramsOnFile(…)

void writeQuantitiesHistogramsOnFile(bool hSigBack,
 bool hSig,
 bool hBack)

Write quantity histograms in a root file. Just need to call this function and all quantities histograms will be written. It needs to be called after subtractSigHistograms().

class PtEtaPhi

Holds PassingFailing class.

Constructor details

PtEtaPhi(
 const char*& resonance,
 const char*& particleName,
 const char*& canvasWatermark,
 const char*& directoryToSave,
 const char*& particleType,
 InvariantMass& ObjMass,
 const char*& tagOrProbe,
 const char* quantityName,
 const char* xAxisName,
 const char* quantityUnit,
 const char* extendedQuantityName,
 int nBins,
 double xMin,
 double xMax,
 int decimals = 3)
 : resonance(resonance),
 particleName(particleName),
 canvasWatermark(canvasWatermark),
 directoryToSave(directoryToSave),
 particleType(particleType),
 ObjMass(ObjMass),
 tagOrProbe(tagOrProbe),
 quantityName(quantityName),
 xAxisName(xAxisName),
 quantityUnit(quantityUnit),
 extendedQuantityName(extendedQuantityName),
 nBins(nBins),
 xMin(xMin),
 xMax(xMax),
 decimals(decimals)
{}

Private variable details

Summary

Type	Name
—————-	—————–
const char*&	resonance
const char*&	particleName
const char*&	canvasWatermark
const char*&	directoryToSave
const char*&	particleType
const char*&	tagOrProbe
InvariantMass&	ObjMass

All variables here are reference for public variables in mother class: TagProbe class.

Public variable details

Summary

Type	Name	Default value
————–	———————-	—————
const char*	tagOrProbe	NULL
const char*	xAxisName	NULL
const char*	quantityUnit	NULL
const char*	extendedQuantityName	NULL
double	xMin	0.
double	xMax	0.
int	nBins	0
int	decimals	3
TEfficiency*	pEff	NULL

Details

	const char* quantityName

	Stores the quantity name. E.g.: “pT”.

	const char* extendedQuantityName

	Stores the extended quantity name. E.g.: “Transversal Momentum”.

	const char* quantityUnit

	Stores the quantity unit. E.g.: “GeV/c”.

	const char* xAxisName

	Stores the quantity name for histogram horizontal axis in LaTeX form. E.g.: “p_{t}”.

	int nBins

	Stores the number of bins in histograms.

	int decimals = 3

	Number of decimals showed in bin width on histogram vertical axis.

	double xMin

	Lower horizontal value of histogram.

	double xMax

	Higher horizontal value of histogram.

	TEfficiency* pEff

	Stores the efficiency plot.

Constructed objects

	PassingFailing Pass

	Stores all informations about invariant masses, including fit and histograms.

	PassingFailing All

	Stores all informations about tag muons, incuding quantities histograms and efficiencies.

Public Functions details

consistencyDebugCout()

void consistencyDebugCout()

Print on terminal the consistency check after subtractSigHistograms().

createEfficiencyCanvas(…)

void createEfficiencyCanvas(bool shouldWrite = false,
 bool shouldSavePNG = false)

Create canvas for all efficiencies calculated. It need to be called after createEfficiencyPlot(…).

createEfficiencyPlot(…)

TEfficiency* createEfficiencyPlot(bool shouldWrite = false)

Create a TEfficiency object with calculated efficiency. It needs do be called after subtractSigHistograms().

createQuantitiesCanvas(…)

TCanvas* createQuantitiesCanvas(bool shouldWrite = false,
 bool shouldSavePNG = false)

Create canvas for all quantities after subtractSigHistograms().

fillQuantitiesHistograms(…)

void fillQuantitiesHistograms(double& quantity,
 double& InvariantMass,
 int& isPassing)

Automatically fill all quantities histograms. Needs to be called in a loop over all dataset.

normalizeHistograms()

void normalizeHistograms()

Normalize quantities histograms of variable bin after filling it.

subtractSigHistograms()

void subtractSigHistograms()

Apply sideband subtraction over all histograms.

writeQuantitiesHistogramsOnFile(…)

void writeQuantitiesHistogramsOnFile(bool hSigBack,
 bool hSig,
 bool hBack)

Write all quantities histograms in a root file. Just need to call this function and all quantities histograms will be written. It needs to be called after subtractSigHistograms().

class SidebandSubtraction

Holds Type class. This is the mother class.

Constructor details

SidebandSubtraction()
{}

SidebandSubtraction(const char* resonance)
 : resonance(resonance)
{}

Public variable details

Summary

Type	Name	Default value
————	—————–	———————
const char*	resonance	“Jpsi”
const char*	particleName	“Muon”
const char*	canvasWatermark	“#bf{CMS Open Data}”
const char*	directoryToSave	“../result/”
bool	doTracker	true
bool	doStandalone	true
bool	doGlobal	true
bool	doTagMuon	true
bool	doProbeMuon	true

Details

	const char* resonance = "Jpsi"

	Supports values "Jpsi", "Upsilon" or "Upsilon(1S)".

	const char* particleName = "Muon"

	Stores the particle name for titles.

	const char* canvasWatermark = "#bf{CMS Open Data}"

	Stores what watermark will be showed in plots.

	const char* directoryToSave = "../result/"

	Where all canvas will be stored.

	bool doTracker = true

	If it will compute Tracker muons efficiency.

	bool doStandalone = true

	If it will compute Standalone muons efficiency.

	bool doGlobal = true

	If it will compute Global muons efficiency.

Constructed objects

	Type Tracker

	Stores all informations about Tracker muons.

	Type Standalone

	Stores all informations about Standalone muons.

	Type Global

	Stores all informations about Global muons.

Public Functions details

consistencyDebugCout()

void consistencyDebugCout()

Print on terminal the consistency check after subtractSigHistograms().

createEfficiencyCanvas(…)

void createEfficiencyCanvas(bool shouldWrite = false,
 bool shouldSavePNG = false)

Create canvas for all efficiencies calculated. It need to be called after createEfficiencyPlot(…).

createEfficiencyPlot(…)

void createEfficiencyPlot(bool shouldWrite = false)

Create a TEfficiency object with calculated efficiency. It needs do be called after subtractSigHistograms().

createMassCanvas(…)

void createMassCanvas(bool drawRegions = false,
 bool shouldWrite = false,
 bool shouldSavePNG = false)

Create canvas for all invariant mass (passing and all muons).

createQuantitiesCanvas(…)

void createQuantitiesCanvas(bool shouldWrite = false,
 bool shouldSavePNG = false)

Create canvas for all quantities after subtractSigHistograms().

defineMassHistogramNumbers()

void defineMassHistogramNumbers(int nBins,
 double xMin,
 double xMax,
 int decimals = 3)

Redefine number parameters of all mass histograms.

doFit()

void doFit()

Apply a fit over all invariant mass stored.

fillMassHistograms(…)

void fillMassHistograms(double** quantities,
 int** types)

Automatically fill all masses histograms. Needs to be called in a loop over all dataset.

fillQuantitiesHistograms(…)

void fillQuantitiesHistograms(double** quantities,
 int** types)

Automatically fill all quantities histograms. Needs to be called in a loop over all dataset.

normalizeHistograms()

void normalizeHistograms()

Normalize quantities histograms of variable bin after filling it.

subtractSigHistograms()

void subtractSigHistograms()

Apply sideband subtraction over all histograms.

updateMassValuesAll()

void updateMassValuesAll()

After fill invariant mass histograms, you need to set signal regions and sideband regions. This function will set it for you.

writeMassHistogramsOnFile(…)

void writeMassHistogramsOnFile(bool writehPass,
 bool writehAll)

Write all mass canvas histograms in a root file. Just need to call this function and all mass histograms will be written.

writeQuantitiesHistogramsOnFile(…)

void writeQuantitiesHistogramsOnFile(bool hSigBack,
 bool hSig,
 bool hBack)

Write all quantities histograms in a root file. Just need to call this function and all quantities histograms will be written. It needs to be called after subtractSigHistograms().

class TagProbe

Holds TagProbe class and InvariantMass class.

Constructor details

TagProbe(
 const char*& resonance,
 const char*& particleName,
 const char*& canvasWatermark,
 const char*& directoryToSave,
 const char*& particleType,
 InvariantMass& ObjMass,
 const char* tagOrProbe)
 : resonance(resonance),
 particleName(particleName),
 canvasWatermark(canvasWatermark),
 directoryToSave(directoryToSave),
 particleType(particleType),
 ObjMass(ObjMass),
 tagOrProbe(tagOrProbe)
{}

Private variable details

Summary

Type	Name
—————-	—————–
const char*&	resonance
const char*&	particleName
const char*&	canvasWatermark
const char*&	directoryToSave
const char*&	particleType
InvariantMass&	ObjMass

All variables here are reference for public variables in mother class: Type class

Public variable details

Summary

Type	Name	Default value
————-	————–	—————
const char*	tagOrProbe	NULL

Details

	const char* tagOrProbe = NULL

	Set if it is “Tag” or “Probe” object

Constructed objects

	PtEtaPhi Pt

	Transversal momentum histograms.

	PtEtaPhi Eta

	Pseudorapidity histograms.

	PtEtaPhi Phi

	Azimutal angle histograms.

Public Functions details

consistencyDebugCout()

void consistencyDebugCout()

Print on terminal the consistency check after subtractSigHistograms().

createEfficiencyCanvas(…)

void createEfficiencyCanvas(bool shouldWrite = false,
 bool shouldSavePNG = false)

Create canvas for all efficiencies calculated. It need to be called after createEfficiencyPlot(…).

createEfficiencyPlot(…)

void createEfficiencyPlot(bool shouldWrite = false)

Create a TEfficiency object with calculated efficiency. It needs do be called after subtractSigHistograms().

createQuantitiesCanvas(…)

void createQuantitiesCanvas(bool shouldWrite = false,
 bool shouldSavePNG = false)

Create canvas for all quantities after subtractSigHistograms().

fillQuantitiesHistograms(…)

void fillQuantitiesHistograms(double** quantities,
 double& InvariantMass,
 int& isPassing)

Automatically fill all quantities histograms. Needs to be called in a loop over all dataset.

normalizeHistograms()

void normalizeHistograms()

Normalize quantities histograms of variable bin after filling it.

subtractSigHistograms()

void subtractSigHistograms()

Apply sideband subtraction over all histograms.

writeQuantitiesHistogramsOnFile(…)

void writeQuantitiesHistogramsOnFile(bool hSigBack,
 bool hSig,
 bool hBack)

Write all quantities histograms in a root file. Just need to call this function and all quantities histograms will be written. It needs to be called after subtractSigHistograms().

class Type

Holds TagProbe class and InvariantMass class.

Constructor details

 Type(
 const char*& resonance,
 const char*& particleName,
 bool& doTagMuon,
 bool& doProbeMuon,
 const char*& canvasWatermark,
 const char*& directoryToSave,
 const char* particleType)
 : resonance(resonance),
 particleName(particleName),
 doTagMuon(doTagMuon),
 doProbeMuon(doProbeMuon),
 canvasWatermark(canvasWatermark),
 directoryToSave(directoryToSave),
 particleType(particleType)
 {}

Private variable details

Summary

Type	Name
————–	—————–
const char*&	resonance
const char*&	particleName
bool&	doTagMuon
bool&	doProbeMuon
const char*&	canvasWatermark
const char*&	directoryToSave

All variables here are reference for public variables in mother class: SidebandSubtraction class.

Public variable details

Summary

Type	Name	Default value
————-	————–	—————
const char*	particleType	NULL

Details

	const char* particleType = NULL

	Set the name of particle type.

Constructed objects

	InvariantMass Mass

	Stores all informations about invariant masses, including fit and histograms.

	TagProbe Tag

	Stores all informations about tag muons, incuding quantities histograms and efficiencies.

	TagProbe Probe

	Stores all informations about probe muons, incuding quantities histograms and efficiencies.

Public Functions details

consistencyDebugCout()

void consistencyDebugCout()

Print on terminal the consistency check after subtractSigHistograms().

createEfficiencyCanvas(…)

void createEfficiencyCanvas(bool shouldWrite = false,
 bool shouldSavePNG = false)

Create canvas for all efficiencies calculated. It need to be called after createEfficiencyPlot(…).

createEfficiencyPlot(…)

void createEfficiencyPlot(bool shouldWrite = false)

Create a TEfficiency object with calculated efficiency. It needs do be called after subtractSigHistograms().

createMassCanvas(…)

void createMassCanvas(bool drawRegions = false,
 bool shouldWrite = false,
 bool shouldSavePNG = false)

Create canvas for all invariant mass (passing and all muons).

createQuantitiesCanvas(…)

void createQuantitiesCanvas(bool shouldWrite = false,
 bool shouldSavePNG = false)

Create canvas for all quantities after subtractSigHistograms().

defineMassHistogramNumbers()

void defineMassHistogramNumbers(int nBins,
 double xMin,
 double xMax,
 int decimals = 3)

Redefine number parameters of mass histograms in Mass object.

doFit()

void doFit()

Apply a fit over invariant mass in Mass object.

fillMassHistograms(…)

void fillMassHistograms(double& InvariantMass,
 int& isPassing)

Automatically fill all masses histograms. Needs to be called in a loop over all dataset.

fillQuantitiesHistograms(…)

void fillQuantitiesHistograms(double** quantities,
 int& isPassing)

Automatically fill all quantities histograms. Needs to be called in a loop over all dataset.

normalizeHistograms()

void normalizeHistograms()

Normalize quantities histograms of variable bin after filling it.

subtractSigHistograms()

void subtractSigHistograms()

Apply sideband subtraction over all histograms.

updateMassValuesAll()

void updateMassValuesAll()

After fill invariant mass histograms, you need to set signal regions and sideband regions. This function will set it for you.

writeMassHistogramsOnFile(…)

void writeMassHistogramsOnFile(bool writehPass,
 bool writehAll)

Write all mass canvas histograms in a root file. Just need to call this function and all mass histograms will be written.

writeQuantitiesHistogramsOnFile(…)

void writeQuantitiesHistogramsOnFile(bool hSigBack,
 bool hSig,
 bool hBack)

Write all quantities histograms in a root file. Just need to call this function and all quantities histograms will be written. It needs to be called after subtractSigHistograms().

The Macro

A macro is a code file create to be interpreted by a program. In this case, ROOT program will interpret it. The main code of this tool is in the file macro.ccp. In this section what compose this file is explained in details. It is important to note that this code has been tested on root 6.22/00.

About the code

macro.cpp is a example how to use Sideband Subtraction to get reconstruction efficiencies for a Tag & Probe ntupple. It analyzes J/psi and Upsilon reconstruction efficiency for tracker, standalone and global muons. The file is encountered in folder main. Now, I going to talk about what this function do and how it does in the text below.

!!! Dataset used
The datasets used in this code are obtained with the main code of this Tag an Probe tool.

Classes list

There are some classes in Sideband Subtraction Tag And Probe project and they are distributed in these files with same name:

Static functions:

	FitFunctions

	Primary

	Merged

	Jpsi

	Upsilon

Classes and struct:

	SidebandSubtraction

	Type

	InvariantMass

	MassValues

	TagProbe

	PtEtaPhi

	PassingFailing

This format shows what nested classes. Classes or structs below slided at right represents they are nested with the class above it.

Sideband Subtraction code structure

The diagram below represents the structure of objects in code. At left we have the structure of objects name. At right we have the correspondent class name of objects in these line.

[image: ../../../../_images/main_structure.png]Main class structure

Also in Mass object we have:

[image: ../../../../_images/mass_structure.png]Mass class structure

Notice that all objects in same line shares the same structure.

Before macro.cpp

There are some files in folder config aside of macro.ccp. The sections below explain about them.

cuts.h

This is it content:

//This files holds some functions used in macro.cpp for particle selection

//Return if is a accepted particle or no
bool applyCuts(double** quantities, int** types)
{
 //Assign variables for easy visualization
 double &ProbeMuon_Pt = *quantities[0];
 double &ProbeMuon_Eta = *quantities[1];
 double &ProbeMuon_Phi = *quantities[2];
 double &TagMuon_Pt = *quantities[3];
 double &TagMuon_Eta = *quantities[4];
 double &TagMuon_Phi = *quantities[5];
 double &InvariantMass = *quantities[6];
 int &PassingProbeTrackingMuon = *types[0];
 int &PassingProbeStandAloneMuon = *types[1];
 int &PassingProbeGlobalMuon = *types[2];

 //Apply cuts
 if (TagMuon_Pt >= 7.0 && fabs(TagMuon_Eta) <= 2.4)
 return true;

 return false;
}

It stores the function applyCuts(), where return true for allowed pair of particles and false for not allowed.

createHistogram.h

This file is called in PassingFailing.cpp and set quantity histograms bins and create the hitogram. Its default content is shwon bellow:

void createHistogram(TH1D* &histo, const char* histoName)
{
 //Set parameters
 string hName = string(particleType) + string(passingOrFailing) + string(tagOrProbe) + string(particleName) + "_" + string(quantityName) + string(histoName);
 string hTitle = string(passingOrFailing) + " in " + string(particleType) + " " + string(tagOrProbe);
 string xAxisTitle = string(xAxisName);
 string yAxisTitleForm = "Events";

 //Add unit if has
 if (strcmp(quantityUnit, "") != 0)
 xAxisTitle += " [" + string(quantityUnit) + "]";

 //Change title is passing
 if (strcmp(passingOrFailing, "Passing") == 0)
 hTitle = string(particleType) + " " + string(particleName) + " " + string(tagOrProbe);

 if (strcmp(passingOrFailing, "All") == 0)
 hTitle = "All " + string(particleName) + " " + string(tagOrProbe);

 //Variable bin for pT
 if (strcmp(quantityName, "Pt") == 0)
 {
 double xbins[] = {0., 2.0, 3.4, 4.0, 4.4, 4.7, 5.0, 5.6, 5.8, 6.0, 6.2, 6.4, 6.6, 6.8, 7.3, 9.5, 13.0, 17.0, 40.};

 int nbins = sizeof(xbins)/sizeof(*xbins) - 1;
 histo = new TH1D(hName.data(), hTitle.data(), nbins, xbins);
 }

 //Variable bin for eta
 else if (strcmp(quantityName, "Eta") == 0)
 {
 double xbins[] = {-2.4, -1.8, -1.4, -1.2, -1.0, -0.8, -0.5, -0.2, 0, 0.2, 0.5, 0.8, 1.0, 1.2, 1.4, 1.8, 2.4};

 int nbins = sizeof(xbins)/sizeof(*xbins) - 1;
 histo = new TH1D(hName.data(), hTitle.data(), nbins, xbins);
 }

 //Bins for phi
 else
 {
 double xbins[] = {-3.0, -1.8, -1.6, -1.2, -1.0, -0.7, -0.4, -0.2, 0, 0.2, 0.4, 0.7, 1.0, 1.2, 1.6, 1.8, 3.0};

 int nbins = sizeof(xbins)/sizeof(*xbins) - 1;
 histo = new TH1D(hName.data(), hTitle.data(), nbins, xbins);
 }

 //Edit histogram axis
 histo->GetYaxis()->SetTitle(Form(yAxisTitleForm.data(), histo->GetBinWidth(0)));
 histo->GetXaxis()->SetTitle(xAxisTitle.data());
}

settings.cpp

It stores many configurations used in macro.cpp:

//List of files
const char *files[] = {"../data_histoall.root",
 "../Run2011AMuOnia_mergeNtuple.root",
 "../JPsiToMuMu_mergeMCNtuple.root",
 "../Run2011A_MuOnia_Upsilon.root",
 "../Upsilon1SToMuMu_MC_full.root"};

const char* directoriesToSave[] = {"../results/result/",
 "../results/Jpsi_Run_2011/",
 "../results/Jpsi_MC_2020_sbs/",
 "../results/Upsilon_Run_2011/",
 "../results/Upsilon_MC_2020_sbs/"};

//MAIN OPTIONS

//Which file of files (variable above) should use
int useFile = 4;

//Set the canvasW wtermark
const char* canvasWatermark = "#bf{CMS Open Data}";

//Path where is going to save results
const char* directoryToSave = directoriesToSave[useFile];
//directoryToSave = "../result/";

//Should limit data?
long long limitData = 0; //0 -> do not limit

//Canvas drawing
bool shouldDrawInvariantMassCanvas = true;
bool shouldDrawInvariantMassCanvasRegion = true;
bool shouldDrawQuantitiesCanvas = true;
bool shouldDrawEfficiencyCanvas = true;

//Muon id anlyse
bool doTracker = true;
bool doStandalone = false;
bool doGlobal = false;

//Muon label anlyse
bool doTagMuon = false;
bool doProbeMuon = true;

//ENDED MAIN OPTIONS

And then there are more automatically set options:

//Auto detect resonance due file index
const char* resonance = "Jpsi";
if (useFile > 2)
 resonance = "Upsilon";
if (useFile == 4)
 resonance = "Upsilon1S";

//Auto detect limit of data
if (limitData > 0)
 directoryToSave = "../partial_result/";

//Compatibility adjusts on file read (for data_histoall ntupples)
bool needsRetroCompatibility = false;

if (useFile == 0)
 needsRetroCompatibility = true;

Code explained in parts

macro.cpp is the main file of this program. Its the main code. It is explained in parts below:

//Input files, options are set here!
#include "config/settings.cpp"

It imports configurations about macro.cpp

//Check if the name of dir is ok
if (string(directoryToSave).back() != string("/"))
{
 cerr << "To avoid errors, please end the result directory with a \"/\"" << endl;
 abort();
}

//Check if dir exists and create
if (gSystem->AccessPathName(directoryToSave))
{
 if (gSystem->mkdir(directoryToSave, true))
 {
 cerr << "\"" << directoryToSave << "\" path could not be found and could not be created ERROR" << endl;
 cerr << "Try to create manually this folder path" << endl;
 abort();
 }
 else
 {
 cout << "\"" << directoryToSave << "\" directory created OK" << endl;
 }
}
else
{
 cout << "\"" << directoryToSave << "\" directory OK" << endl;
}

Check if the directoryToSave (setted in settings.cpp) has a valid name and if exists. If not, the code creates the folder.

//Compatibility adjusts on file read (for data_histoall ntupples)
string folderName = "tagandprobe/";
if (needsRetroCompatibility)
 folderName = "demo/";

//Open and read files
TFile *file0 = TFile::Open(files[useFile]);
TTree *TreePC = (TTree*)file0->Get((folderName + "PlotControl").data());
TTree *TreeAT = (TTree*)file0->Get((folderName + "AnalysisTree").data());
cout << "Using \"" << files[useFile] << "\" ntupple" << endl;

This part is responsible to open the file and do conversions. The first one file is a bit different of the other ones, so it needs compatibiliy besides its not important anymore and is a obsolete file.

//Create variables
double ProbeMuon_Pt;
double ProbeMuon_Eta;
double ProbeMuon_Phi;
double TagMuon_Pt;
double TagMuon_Eta;
double TagMuon_Phi;
double InvariantMass;
int PassingProbeTrackingMuon;
int PassingProbeStandAloneMuon;
int PassingProbeGlobalMuon;

//Assign variables
TreePC->SetBranchAddress("ProbeMuon_Pt", &ProbeMuon_Pt);
TreePC->SetBranchAddress("ProbeMuon_Eta", &ProbeMuon_Eta);
TreePC->SetBranchAddress("ProbeMuon_Phi", &ProbeMuon_Phi);
TreePC->SetBranchAddress("TagMuon_Pt", &TagMuon_Pt);
TreePC->SetBranchAddress("TagMuon_Eta", &TagMuon_Eta);
TreePC->SetBranchAddress("TagMuon_Phi", &TagMuon_Phi);
if (needsRetroCompatibility)
TreePC->SetBranchAddress("InvariantMass", &InvariantMass);
else
TreeAT->SetBranchAddress("InvariantMass", &InvariantMass);
TreeAT->SetBranchAddress("PassingProbeTrackingMuon", &PassingProbeTrackingMuon);
TreeAT->SetBranchAddress("PassingProbeStandAloneMuon", &PassingProbeStandAloneMuon);
TreeAT->SetBranchAddress("PassingProbeGlobalMuon", &PassingProbeGlobalMuon);

double* quantities[] = {&ProbeMuon_Pt,
 &ProbeMuon_Eta,
 &ProbeMuon_Phi,
 &TagMuon_Pt,
 &TagMuon_Eta,
 &TagMuon_Phi,
 &InvariantMass,
 };

int* types[] = {&PassingProbeTrackingMuon,
 &PassingProbeStandAloneMuon,
 &PassingProbeGlobalMuon
 };

Now variables are created and linked to branches in ntupple. Then a array of these variables are set.

//Create a object and set configs
SidebandSubtraction SdS{resonance};
SdS.canvasWatermark = canvasWatermark;
SdS.directoryToSave = directoryToSave;
SdS.doTracker = doTracker;
SdS.doStandalone = doStandalone;
SdS.doGlobal = doGlobal;
SdS.doTagMuon = doTagMuon;
SdS.doProbeMuon = doProbeMuon;

cout << "resonance: " << SdS.resonance << "\n";
cout << "Using subtraction factor as integral of background fit\n";

The macro.cpp now creates the SdS object and assign variables setted in settings.cpp. At this point, it creates all histograms that you will need such as invariant mass histograms and pT, eta, phi histograms.

//Get data size and set data limit if has
long long numberEntries = TreePC->GetEntries();
if (limitData > 0 && limitData < numberEntries)
 numberEntries = limitData;
printf("Data analysed = %lld of %lld\n", numberEntries, TreePC->GetEntries());

//Prepare for showing progress
string progressFormat = "Progress: %05.2f%% %0"+to_string(strlen(to_string(numberEntries).data()))+"lld/%lld\r";
auto lastTime = std::chrono::steady_clock::now();
auto start = std::chrono::steady_clock::now();

Now the code are limiting data if you setted and setting a string for progress information while filling histograms.

cout << "\nFilling Invariant Mass Histograms..... (1/2)\n";

//Loop between the components
for (long long i = 0; i < numberEntries; i++)
{
 //Select particle pair
 TreePC->GetEntry(i);
 TreeAT->GetEntry(i);

 //Show progress on screen
 if (chrono::duration_cast<chrono::milliseconds>(chrono::steady_clock::now() - lastTime).count() >= 1000 || i == numberEntries - 1)
 {
 printf(progressFormat.data(), (float)(i+1)/(float)numberEntries*100, i+1, numberEntries);
 lastTime = chrono::steady_clock::now();
 }

 //Fill histograms
 if (applyCuts(quantities, types))
 {
 SdS.fillMassHistograms(quantities, types);
 }
}

cout << "\nTook " << chrono::duration_cast<chrono::milliseconds>(chrono::steady_clock::now() - start).count() << " ms\n";

This part of the code fill invariant mass histograms. Cuts are applyied in cuts.h.
At this point, macro.cpp separes in passing and all muons.

//Do function fit over the histogram
SdS.doFit();

//Get values for invariant mass and sigma from plot
SdS.updateMassValuesAll();

After filling mass histograms, it is necessary to apply the fit function.

After doing fit, updateMassValuesAll() get regions for sideband subtraction mostly based in fitting.

//-------------------------------------
// Generate and save files
//-------------------------------------

//Create file root to store generated files
TFile* generatedFile = TFile::Open((string(directoryToSave) + "generated_hist.root").data(),"RECREATE");
generatedFile->mkdir("canvas/");
generatedFile-> cd("canvas/");

if (shouldDrawInvariantMassCanvas)
{
 bool drawRegions = false;
 bool shouldWrite = true;
 bool shouldSavePNG = true;

 SdS.createMassCanvas(drawRegions, shouldWrite, shouldSavePNG);
}

if (shouldDrawInvariantMassCanvasRegion && !isMC)
{
 bool drawRegions = true;
 bool shouldWrite = true;
 bool shouldSavePNG = true;

 SdS.createMassCanvas(drawRegions, shouldWrite, shouldSavePNG);
}

Canvas are drawn and saved in the generated_hist.root file and in the folder as .png.

//Prepare for showing progress
lastTime = std::chrono::steady_clock::now();
start = std::chrono::steady_clock::now();

cout << "\nFilling Quantities Histograms..... (2/2)\n";

//Loop between the components again
for (long long i = 0; i < numberEntries; i++)
{
 //Select particle pair
 TreePC->GetEntry(i);
 TreeAT->GetEntry(i);

 //Show progress on screen
 if (chrono::duration_cast<chrono::milliseconds>(chrono::steady_clock::now() - lastTime).count() >= 1000 || i == numberEntries - 1)
 {
 printf(progressFormat.data(), (float)(i+1)/(float)numberEntries*100, i+1, numberEntries);
 lastTime = chrono::steady_clock::now();
 }

 //Fill histograms
 if (applyCuts(quantities, types))
 {
 SdS.fillQuantitiesHistograms(quantities, types);
 }
}
cout << "\nTook " << chrono::duration_cast<chrono::milliseconds>(chrono::steady_clock::now() - start).count() << " ms\n";

At this point of the code, this will separate all histogram in signal + background (signal region) and background (sideband region) due the regions for sideband choosen before.

//Normalize Histograms for variable binning
cout << "\n";
SdS.normalizeHistograms();

After folling histograms, as some of them has variable bins, it needs to be normalized. This function does this.

//For sideband subtraction
SdS.subtractSigHistograms();

Subtract background from signal + background histogram to create signal histogram. This method is what is called sideband subtraction.

if (shouldDrawQuantitiesCanvas)
{
 bool shouldWrite = true;
 bool shouldSavePNG = true;

 cout << endl;
 SdS.createQuantitiesCanvas(shouldWrite, shouldSavePNG);
}

The code here draw the canvas for all pT, eta and phi quantities it has. Including background, signal and signal + background.

//Debug consistency for histograms
SdS.consistencyDebugCout();

This is a checker of how consistent is our result values and print on terminal results. For all histograms this calculations should result 0. For more details about how exactly it works, see consistencyDebugCout().

//Save histograms
generatedFile->mkdir("histograms/");
generatedFile-> cd("histograms/");

//Write quantities histograms on file
{
 bool writehSigBack = true;
 bool writehSig = true;
 bool writehBack = true;

 SdS.writeQuantitiesHistogramsOnFile(writehSigBack, writehSig, writehBack);
}

//Write mass histograms on file
{
 bool writehPass = true;
 bool writehAll = true;

 SdS.writeMassHistogramsOnFile(writehPass, writehAll);
}

At this point, the code will write all histograms in a folder in the .root generated file. Including mass histograms and quantities histograms.

//Save plots
generatedFile->mkdir("efficiency/plots/");
generatedFile->cd("efficiency/plots/");

//Creates efficiency plots
{
 bool shouldWrite = true;

 SdS.createEfficiencyPlot(shouldWrite);
}

It calculates the efficiency of the quantities by using TEfficiency [https://root.cern.ch/doc/master/classTEfficiency.html] class of ROOT. Then saves the plots in another folder inside the .root file.

//Saves new histograms and canvas in file
generatedFile->mkdir("efficiency/canvas/");
generatedFile->cd("efficiency/canvas/");

if (shouldDrawEfficiencyCanvas)
{
 bool shouldWrite = true;
 bool shouldSavePNG = true;

 cout << "\n";
 SdS.createEfficiencyCanvas(shouldWrite, shouldSavePNG);
}

//Close files
generatedFile->Close();

cout << "\nDone. All result files can be found at \"" << SdS.directoryToSave << "\"\n\n";

The end point of this function. It creates a canvas for every efficiency plot calculated above and also saves in the generated file. After this, the task is done.

Results

All results are saved in a folder setted in directoryToSave variable. The result contains a file .root with all canvas, histograms and plots aside of .png images of all canvas created.

Sideband

Signal extraction: sideband subtraction method

The reconstruction efficiency is calculated using only signal muons. In order to measure the efficiency, we need a way to extract signal from the dataset. You’ve used the fitting method and now you’ll meet the sideband subtraction method.

This method consists in choosing sideband and signal regions in invariant mass distribution. The sideband regions (shaded in red in the figure) have background particles and the signal region (shared in green in the figure) has background and signal particles.

[image: ../../../../_images/InvariantMass_Tracker_region1.svg]Invariant Mass histogram

!!! Note
The background corresponds to candidates that do not correspond to the decay of a genuine resonance; for example, the pair is formed by the tag muon associated to an uncorrelated track produced elsewhere in the collision; the corresponding invariant mass has thus a smooth continuous shape, that is extrapolated from the signal regions into the sideband region.

For each event category (i.e. Pass and All), and for a given variable of interest (e.g., the probe pT), two distributions are obtained, one for each region (Signal and Sideband). In order to obtain the variable distribution for the signal only, we proceed by subtracting the Background distribution (Sideband region) from the Signal+Background one (Signal region):

[image: ../../../../_images/subtraction1.svg]Sideband Subtraction equation

Where the normalization α factor quantifies the quantity of background present in the signal region:

[image: ../../../../_images/alpha1.svg]Alpha factor equation

And for the uncertainty:

[image: ../../../../_images/subtraction_error1.svg]Sideband Subtraction errors equation

Applying those equations we get histograms like this:

[image: ../../../../_images/Tracker_Probe_Pt_Passing.svg]Tracker_Probe_Pt_Passing histogram

	Solid blue line (Total) = particles in signal region;

	Dashed blue line (Background) = particles in sideband regions;

	Solid magenta line (signal) = signal histogram (background subtracted).

You will see this histogram on this exercise.

!!! Note “About this code”
More info about this code can be found in the reference guide.

Preparing files

First, from the root folder of our downloaded repository, we need to go sideband subtraction method tutorial:

cd efficiency_tools/sideband_subtraction

To copy the J/ψ dataset of real data file to your machine (requires 3,3 GB), type:

wget -O Run2011AMuOnia_mergeNtuple.root "https://cernbox.cern.ch/index.php/s/lqHEasYWJpOZsfq/download?files=Run2011AMuOnia_mergeNtuple.root"

Run this code to download the simulation dataset for J/ψ (requires 492 MB):

wget -O JPsiToMuMu_mergeMCNtuple.root "https://cernbox.cern.ch/index.php/s/lqHEasYWJpOZsfq/download?files=JPsiToMuMu_mergeMCNtuple.root"

Now, check if everything is ok:

ls

JPsiToMuMu_mergeMCNtuple.root main README.md Run2011AMuOnia_mergeNtuple.root

Your sideband_subtraction folder should have these files:

[image: ../../../../_images/files_sideband.png]Files in sideband_subtraction folder

Preparing code for Data

!!! Note
This tutorial will teach you to manage the files on the terminal, but you can use a graphical file explorer or any other way you are used to.

We need to edit some settings. Open settings.cpp:

cd main/config
ls

createHistogram.h cuts.h settings.cpp

There are different ways to open this file. You can try to run:

gedit settings.cpp

Or, if you can not use gedit, try nano:

nano settings.cpp

!!! Note “I do not have nano!”
You can try to use any text editor, but here is some commands you cant try to use to install it:

* Ubuntu/Debian: `sudo apt-get -y install nano`.
* RedHat/CentOS/Fedora: `sudo yum install nano`.
* Mac OS X: `nano is installed by default`.

We want to calculate efficiencies of tracker muons. With the settings.cpp file opened, make sure to let the variables like this:

//Canvas drawing
bool shouldDrawInvariantMassCanvas = true;
bool shouldDrawInvariantMassCanvasRegion = true;
bool shouldDrawQuantitiesCanvas = true;
bool shouldDrawEfficiencyCanvas = true;

//Muon id analyse
bool doTracker = true;
bool doStandalone = false;
bool doGlobal = false;

//quantity analyse
bool doPt = true;
bool doEta = true;
bool doPhi = true;

We want to calculate the efficiency using specific files that we downloaded. They name are Run2011AMuOnia_mergeNtuple.root and JPsiToMuMu_mergeMCNtuple.root and are listed in const char *files[]. While settings.cpp is open, try to use the variable int useFile to run Run2011AMuOnia_mergeNtuple.root.

??? Example “How to do this”
Make sure useFile is correct:

```cpp
//List of files
const char *files[] = {"../data_histoall.root",
                       "../Run2011AMuOnia_mergeNtuple.root",""
                       "../JPsiToMuMu_mergeMCNtuple.root",
                       "../Run2011A_MuOnia_Upsilon.root",
                       "../Upsilon1SToMuMu_MC_full.root"};

const char* directoriesToSave[] = {"../results/result/",
                                   "../results/Jpsi Run 2011/",
                                   "../results/Jpsi MC 2020/",
                                   "../results/Upsilon Run 2011/",
                                   "../results/Upsilon MC 2020/"};


//MAIN OPTIONS

//Which file of files (variable above) should use
int useFile = 1;
```

It will tell which configuration the program will use. So, the macro will run with the ntuple in `files[useFile]` and the results will be stored in `directoriesToSave[useFile]`.

the first three files won't be used in this exercise.

!!! Note “About code”
Normally we need to set the variable const char* resonance, but at this time it is already done and set automatically for these ntuples’ names.

Editting bins

The code allows to define the binning of the kinematic variable, to ensure each bin is sufficiently populated, for increased robustness. To change the binning, open createHistogram.h that is on same folder that settings.cpp:

gedit createHistogram.h

Search for the createEfficiencyPlot(...) function. You’ll find something like this:

void createHistogram(TH1D* &histo, const char* histoName)
{...}

For each quantity (pT, eta, phi) we used different bins. To change the bins, look inside the createEfficiencyPlot(...) function. In a simpler version, you’ll see a structure like this:

//Variable bin for pT
if (strcmp(quantityName, "Pt") == 0)
{
 //Here creates histogram for pT
}

//Variable bin for eta
else if (strcmp(quantityName, "Eta") == 0)
{
 //Here creates histogram for eta
}

//Bins for phi
else
{
 //Here creates histogram for phi
}

??? Example “See the whole scructure”
Don’t be scared! Code does’nt bite.

```cpp
//Variable bin for pT
if (strcmp(quantityName, "Pt") == 0)
{
    double xbins[] = {0., 2.0, 3.4, 4.0, 4.4, 4.7, 5.0, 5.6, 5.8, 6.0, 6.2, 6.4, 6.6, 6.8, 7.3, 9.5, 13.0, 17.0, 40.};

    int nbins = sizeof(xbins)/sizeof(*xbins) - 1;
    histo = new TH1D(hName.data(), hTitle.data(), nbins, xbins);
}

//Variable bin for eta
else if (strcmp(quantityName, "Eta") == 0)
{
    double xbins[] = {-2.4, -1.8, -1.4, -1.2, -1.0, -0.8, -0.5, -0.2, 0, 0.2, 0.5, 0.8, 1.0, 1.2, 1.4, 1.8, 2.4};

    int nbins = sizeof(xbins)/sizeof(*xbins) - 1;
    histo = new TH1D(hName.data(), hTitle.data(), nbins, xbins);
}

//Bins for phi
else
{
    double xbins[] = {-3.0, -1.8, -1.6, -1.2, -1.0, -0.7, -0.4, -0.2, 0, 0.2, 0.4, 0.7, 1.0, 1.2, 1.6, 1.8, 3.0};

    int nbins = sizeof(xbins)/sizeof(*xbins) - 1;
    histo = new TH1D(hName.data(), hTitle.data(), nbins, xbins);
}

//Edit histogram axis
histo->GetYaxis()->SetTitle(Form(yAxisTitleForm.data(), histo->GetBinWidth(0)));
histo->GetXaxis()->SetTitle(xAxisTitle.data());
```


The code that creates the histogram bins is located inside the conditionals and is commented. You can edit this code and uncomment to create histogram bins however you want. Instead of using a function to generate the bins, we can also define them manually.

As we intend to compare the results between data and simulation, but also between the sideband and fitting methods. You are advised to employ the same bin choice. Garantee your the code uses same bin as the previous here:

 //Variable bin for pT
 if (strcmp(quantityName, "Pt") == 0)
 {
 double xbins[] = {0., 2.0, 3.4, 4.0, 4.4, 4.7, 5.0, 5.6, 5.8, 6.0, 6.2, 6.4, 6.6, 6.8, 7.3, 9.5, 13.0, 17.0, 40.};

 int nbins = sizeof(xbins)/sizeof(*xbins) - 1;
 histo = new TH1D(hName.data(), hTitle.data(), nbins, xbins);
 }

 //Variable bin for eta
 else if (strcmp(quantityName, "Eta") == 0)
 {
 double xbins[] = {-2.4, -1.8, -1.4, -1.2, -1.0, -0.8, -0.5, -0.2, 0, 0.2, 0.5, 0.8, 1.0, 1.2, 1.4, 1.8, 2.4};

 int nbins = sizeof(xbins)/sizeof(*xbins) - 1;
 histo = new TH1D(hName.data(), hTitle.data(), nbins, xbins);
 }

 //Bins for phi
 else
 {
 double xbins[] = {-3.0, -1.8, -1.6, -1.2, -1.0, -0.7, -0.4, -0.2, 0, 0.2, 0.4, 0.7, 1.0, 1.2, 1.6, 1.8, 3.0};

 int nbins = sizeof(xbins)/sizeof(*xbins) - 1;
 histo = new TH1D(hName.data(), hTitle.data(), nbins, xbins);
 }

Running the code

After setting the configurations, it’s time to run the code. Go back to the main directory and make sure macro.cpp is there.

cd ..
ls

classes compare_efficiency.cpp config macro.cpp

Run the macro.cpp:

root -l -b -q macro.cpp

"../results/Jpsi_Run_2011/" directory created OK
Using "../Run2011AMuOnia_mergeNtuple.root" ntupple
resonance: Jpsi
Using subtraction factor as integral of background fit
Data analysed = 5950253 of 5950253

!!! Note
As this dataset is larger, the code will run slowly. It can take several minutes to be completed depending where the code is been running.

In this process, more informations will be printed in terminal while plots will be created on a specified folder. The message below tells you that code has finished running:

Done. All result files can be found at "../results/Jpsi_Run_2011/"

!!! Note “Common errors”
If you run the code and your terminal printed some erros like:

```plaintext
Error in <ROOT::Math::Cephes::incbi   : Wrong domain for parameter b (must be     0)
```

This occurs when the contents of a bin of the pass histogram is greater than the corresponding bin in the total histogram. With sideband subtraction, depending on bins you choose, this can happen and will result in enormous error bars.

This issue may be avoided by fine-tuning the binning choice. For now, these messages may be ignored.

Probe Efficiency results for Data

If all went well, your results are going to be like these:

[image: ../../../../_images/Efficiency_Tracker_Probe_Pt.png]Efficiency_Tracker_Probe_Pt
[image: ../../../../_images/Efficiency_Tracker_Probe_Eta.png]Efficiency_Tracker_Probe_Eta
[image: ../../../../_images/Efficiency_Tracker_Probe_Phi.png]Efficiency_Tracker_Probe_Phi

Preparing and running the code for simulation

!!! Tip “Challenge”
Try to run the same code on the JPsiToMuMu_mergeMCNtuple.root file we downloaded.

??? Example "Tip"

 You will need the redo the steps above, but setting:

    ```cpp
    int useFile = 2;
    ```

 in `main/config/settings.cpp` file.

!!! Note “Comparison between real data and simulation”
We’ll do this in the last section of this exercise. So the challenge above is mandatory.

!!! Tip “Extra challenge”
If you are looking for an extra exercise, you can try to apply the same logic, changing some variables you saw, in order to get results for the Υ nutpple.

To download the Υ real data ntupple (requires 442 MB):

```sh
wget -O Run2011A_MuOnia_Upsilon.root "https://cernbox.cern.ch/index.php/s/lqHEasYWJpOZsfq/download?files=Run2011A_MuOnia_Upsilon.root"
```

Run this code to download the simulation dataset for Υ (requires 67 MB):

```sh
wget -O Upsilon1SToMuMu_MC_full.root "https://cernbox.cern.ch/index.php/s/lqHEasYWJpOZsfq/download?files=Upsilon1SToMuMu_MC_full.root"
```


How to make a comparison between two previous methods of signal extraction

How sideband subtraction method code stores its files

the Sideband subtraction code saves every efficiency plot in efficiency/plots/ folder inside a single generated_hist.root file. Lets check it!

You’re probably on the main directory. Lets go back one directory.

cd ..
ls

JPsiToMuMu_mergeMCNtuple.root README.md Run2011AMuOnia_mergeNtuple.root
main results

A folder named results showed up on this folder. Lets go check its content.

cd results
ls

Jpsi_MC_2020 Jpsi_Run_2011

If you did every step of the sideband subtraction on this page lesson, these results should match with the results on your pc. Access one of those folders (except comparison).

cd Jpsi_Run_2011
ls

Efficiency_Tracker_Probe_Eta.png Tracker_Probe_Eta_All.png
Efficiency_Tracker_Probe_Phi.png Tracker_Probe_Eta_Passing.png
Efficiency_Tracker_Probe_Pt.png Tracker_Probe_Phi_All.png
generated_hist.root Tracker_Probe_Phi_Passing.png
InvariantMass_Tracker.png Tracker_Probe_Pt_All.png
InvariantMass_Tracker_region.png Tracker_Probe_Pt_Passing.png

Here, all the output plots you saw when running the sideband subtraction method are stored as a .png. Aside from them, there’s a generated_hist.root that stores the efficiency in a way that we can manipulate it after. This file is needed to run the comparison between efficiencies for the sideband subtraction method. Lets look inside of this file.

Run this command to open generated_hist.root with ROOT:

root -l generated_hist.root

root [0]
Attaching file generated_hist.root as _file0...
(TFile *) 0x55dca0f04c50
root [1]

Lets check its content. Type on terminal:

new TBrowser

You should see something like this:

[image: ../../../../_images/tbrowser0.png]TBrowser

This is a visual navigator of a .root file. Here you can see the struture of generated_hist.root. Double click the folders to open them and see their content. The Efficiency plots we see are stored in efficiency/plots/ folder:

[image: ../../../../_images/tbrowser1.png]TBrowser showing plots folder

You can double click each plot to see its content:

[image: ../../../../_images/tbrowser2.png]TBrowser showing efficiency plot for sideband subtraction method

!!! Tip
To close this window, click on terminal and press Ctrl + C. This command stops any processes happening in the terminal.

!!! Info “Key Point”
* As you see, the .root file has paths inside of it and the efficiencies plots have a self path inside them as well!

Comparison results between real data and simulations for sideband method

After runinng the sideband subtraction code, we get a .root with all the efficiencies plots inside it in two different folders:

	../results/Jpsi_Run_2011/generated_hist.root

	../results/Jpsi_MC_2020/generated_hist.root

We’ll get back to this on the discussion below.

Head back to the main folder. Inside of it there is a code for the efficiency plot comparison. Lets check it out. From the sideband_subtraction folder, type:

cd main
ls

classes compare_efficiency.cpp config macro.cpp

There is it. Now lets open it.

gedit compare_efficiency.cpp

Its easy to prepare it for the sideband subtraction comparison. Our main editing point can be found in this part:

//CONFIGS

int useScheme = 0;
//Jpsi Sideband Run vs Jpsi Sideband MC
//Jpsi Fitting Run vs Jpsi Fitting MC
//Jpsi Sideband Run vs Jpsi Fitting Run
//Upsilon Sideband Run vs Upsilon Sideband MC
//Upsilon Fitting Run vs Upsilon Fitting MC
//Upsilon Sideband Run vs Upsilon Fitting Run

//Muon id analyse
bool doTracker = true;
bool doStandalone = true;
bool doGlobal = true;

//quantity analyse
bool doPt = true;
bool doEta = true;
bool doPhi = true;

!!! Note
In the scope above we see:

* `int useScheme` represents which comparison you are doing.
* `bool doTracker` is a variable that allow plots for tracker muons.
* `bool doStandalone` is a variable that allow plots for standalone muons.
* `bool doGlobal` is a variable that allow plots for global muons.
* `bool doPt` is a variable that allow plots for muon pT.
* `bool doEta` is a variable that allow plots for muon η.
* `bool doPhi` is a variable that allow plots for muon φ.

Everything is up to date to compare sideband subtraction’s results between real data and simulations, except it is comparing standalone and global muons. As we are looking for tracker muons efficiencies only, you should switch to false variables for Standalone and Global.

Also, you will need to change the useScheme variable to plot what you want to plot. As we want to plot efficiency of real data and simulated data, the value has to be 0.

??? Example “See result scructure”
If you deleted the right lines, your code now should be like this:

```cpp
//CONFIGS

int useScheme = 0;
//Jpsi    Sideband Run vs Jpsi    Sideband MC
//Jpsi    Fitting  Run vs Jpsi    Fitting  MC
//Jpsi    Sideband Run vs Jpsi    Fitting  Run
//Upsilon Sideband Run vs Upsilon Sideband MC
//Upsilon Fitting  Run vs Upsilon Fitting  MC
//Upsilon Sideband Run vs Upsilon Fitting  Run

//Muon id analyse
bool doTracker    = true;
bool doStandalone = false;
bool doGlobal     = false;

//quantity analyse
bool doPt  = true;
bool doEta = true;
bool doPhi = true;
```

Let your variables like this.

Now you need to run the code. To do this, save the file and type on your terminal:

root -l compare_efficiency.cpp

If everything went well, the message you’ll see in terminal at end of the process is:

Use Scheme: 0
Done. All result files can be found at "../results/Comparison_Upsilon_Sideband_Run_vs_MC/"

!!! Note
The command above to run the code will display three new windows on your screen with comparison plots. You can avoid them by running straight the command below.

```cpp
root -l -b -q compare_efficiency.cpp
```

In this case, to check it results you are going to need go for result folder (printed on code run) and check images there by yourself.
You can try to run `new TBrowser` again:

```cpp
cd [FOLDER_PATH]
root -l
new TBrowser
```


And as output plots comparison, you get:

[image: ../../../../_images/Muon_Pt_Tracker_Probe_Efficiency.png]Muon_Pt_Tracker_Probe_Efficiency
[image: ../../../../_images/Muon_Eta_Tracker_Probe_Efficiency.png]Muon_Eta_Tracker_Probe_Efficiency
[image: ../../../../_images/Muon_Phi_Tracker_Probe_Efficiency.png]Muon_Phi_Tracker_Probe_Efficiency

Now you can type the command below to quit root and close all created windows:

.q

How fitting method code stores its files

To do the next part, first you need to understand how the fitting method code saves. It is not so different than sideband subtraction method. Lets look at how they are saved.

If you look inside fitting\results' folder, where is stored fitting method results, you will see another folder named efficiencies. lets go there by terminal from fitting folder:

cd results/efficiencies
ls

efficiency

Inside of it there is a unique folder named efficiency. It is necessary because later on, we will work in efficiencies in 2 dimentions. The efficiency folder means it is one-dimensional, which we worked here so on.

cd efficiency
ls

Comparison_Run2011_vs_MC Jpsi_MC_2020 Jpsi_Run_2011

Let’s go inside one of them:

cd Jpsi_Run_2011
ls

Pt_trackerMuon.root

For every configuration for a specific dataset, they will create .root files inside its respectively folder. For example, this one folder that we choose will have all calculations for the J/ψ real data dataset.

If you go with your terminal to this folder and run this command, you’ll see that the result files only have one plot on main folder.

root -l Pt_trackerMuon.root

root [0]
Attaching file Pt_trackerMuon.root as _file0...
(TFile *) 0x55efb5f44930
root [1]

Now lets look at its content. Type on terminal:

new TBrowser

It has only one plot, because the others are in different files. Inside the folder histograms, you can find the histograms that created this efficiency result.

[image: ../../../../_images/fitting_tbrowser.png]TBrowser showing efficiency plot for fitting method

!!! Info “Key Point”
* There is a .root file for each efficiency plot created with the fitting method.

Comparison results between real data and simulations for fitting method

Go back to the main folder on sideband_subtraction folder.

cd main
ls

classes compare_efficiency.cpp config macro.cpp

Open compare_efficiency.cpp again

gedit compare_efficiency.cpp

This is how your code should look like now:

//CONFIGS

int useScheme = 0;
//Jpsi Sideband Run vs Jpsi Sideband MC
//Jpsi Fitting Run vs Jpsi Fitting MC
//Jpsi Sideband Run vs Jpsi Fitting Run
//Upsilon Sideband Run vs Upsilon Sideband MC
//Upsilon Fitting Run vs Upsilon Fitting MC
//Upsilon Sideband Run vs Upsilon Fitting Run

//Muon id analyse
bool doTracker = true;
bool doStandalone = false;
bool doGlobal = false;

//quantity analyse
bool doPt = true;
bool doEta = true;
bool doPhi = true;

You have to do just two things:

	edit int useScheme value to current analysis.

	Put others quantities expect pT to false, we did not obtained η nor φ results on previous page.

??? Example “After making those edits”
Your code should look like this:

```cpp
//CONFIGS

int useScheme = 1;
//Jpsi    Sideband Run vs Jpsi    Sideband MC
//Jpsi    Fitting  Run vs Jpsi    Fitting  MC
//Jpsi    Sideband Run vs Jpsi    Fitting  Run
//Upsilon Sideband Run vs Upsilon Sideband MC
//Upsilon Fitting  Run vs Upsilon Fitting  MC
//Upsilon Sideband Run vs Upsilon Fitting  Run

//Muon id analyse
bool doTracker    = true;
bool doStandalone = false;
bool doGlobal     = false;

//quantity analyse
bool doPt  = true;
bool doEta = false;
bool doPhi = false;
```


Doing this and running the program with:

root -l compare_efficiency.cpp

Should get you these results:

[image: ../../../../_images/Muon_Pt_Tracker_Probe_Efficiency1.png]Muon_Pt_Tracker_Probe_Efficiency
[image: ../../../../_images/Muon_Eta_Tracker_Probe_Efficiency1.png]Muon_Eta_Tracker_Probe_Efficiency
[image: ../../../../_images/Muon_Phi_Tracker_Probe_Efficiency1.png]Muon_Phi_Tracker_Probe_Efficiency

!!! Tip “Challenge”
As you notice here we presented comparison for η and φ. Try to go back to fitting method tutorial and redo commands to get efficiencies for these quantities in order to compare with sideband subctraction method. Do not forget to turn bool doEta and bool doPhi true.

Now you can type the command below to quit root and close all created windows:

.q

Comparison results between data from the sideband and data from the fitting method

!!! Tip “Challenge”
Using what you did before, try to mix them and plot a comparison between real data for sideband method and real data for sthe fitting method and get an analysis.
Notice that:

* Real data = Run 2011
* Simulations = Monte Carlo = MC

Tip: you just need to change what you saw in this page to do this comparison.

!!! Tip “Extra challenge”
As you did with the last 2 extras challenges, try to redo this exercise comparing results between Υ datas.

Procedures and strategy for estimating the systematics uncertainties

Setting it up

If you have done the fitting tutorial you already have done this part so you may go directly to “Generating uncertainties”
Clone this repository and go to the fitting folder.

git clone git://github.com/cms-legacydata-analyses/TagAndProbeTool
cd TagAndProbe/efficiency_tools/fitting

You will also need to download the Run2011AMuOnia_mergeNtuple.root file using this link.

https://cernbox.cern.ch/index.php/s/lqHEasYWJpOZsfq

Data simplifying

In order to run this code, use this command to simplify the data so that it can be read by the RooFit root library.

root simplify_data.cpp

This will create a “TagAndProbe_Jpsi_Run2011.root” file, this process may take a few minutes. move the file to the DATA folder.

Estimations of systematics uncertainty sources

To estimate the systematic error we will need first to get some uncertainties from the DATA. So, to do that, run the following code.

root -l -b -q plot_sys_efficiency.cpp

By default, this code will estimate the Muon ID efficiency for the Global Muon ID for |η| distribution, this can be changed by opening the “plot_sys_efficiency.cpp” and commenting and uncommenting the Muon ID and quantity of your desire. This process may take several minutes to complete.

The systematics uncertainties will be evaluate by making small changes in the fit on the invariant mass distribution of the resonance. For example, the ψ decaying in dimuons, in this case the changes were: 2x Gaussians (”2x gaus” as in the code) which means fitting with two gaussians. The other sources are the upper and under limits of invariant mass distribution and so “Mass Up” which means making the mass window bigger, “Mass Down” which means making the mass window smaller. Last source you can modify the bin size of the same distribution. “Bin up” means making the fit with more bins and “Bin down” means making the fit with less bins.

In order to do the next step you will have to run the “plot_sys_efficiency.cpp” for the Pt of both global and tracker Muon. To get the Pt for the traker Muons the code should look like this.

//Which Muon Id do you want to study?
string MuonId = "trackerMuon";
//string MuonId = "standaloneMuon";
//string MuonId = "globalMuon";

//Which quantity do you want to use?
string quantity = "Pt"; double bins[] = {0., 3.0, 3.6, 4.0, 4.4, 4.7, 5.0, 5.6, 5.8, 6.0, 6.2, 6.4, 6.6, 6.8, 7.3, 9.5, 13.0, 17.0, 40.};
//string quantity = "Eta"; double bins[] = {-2.4, -1.4, -1.2, -1.0, -0.8, -0.5, -0.2, 0, 0.2, 0.5, 0.8, 1.0, 1.2, 1.4, 2.4};
//string quantity = "Phi"; double bins[] = {-3.0, -1.8, -1.6, -1.2, -1.0, -0.7, -0.4, -0.2, 0, 0.2, 0.4, 0.7, 1.0, 1.2, 1.6, 1.8, 3.0};

//string quantity = "Pt"; double bins[] = {0.0, 2.0, 3.4, 4.0, 5.0, 6.0, 8.0, 10.0, 40.};
//string quantity = "Eta"; double bins[] = {0.0, 0.4, 0.6, 0.95, 1.2, 1.4, 1.6, 1.8, 2.4};

and like this to the global Muons.

//Which Muon Id do you want to study?
//string MuonId = "trackerMuon";
//string MuonId = "standaloneMuon";
string MuonId = "globalMuon";

//Which quantity do you want to use?
string quantity = "Pt"; double bins[] = {0., 3.0, 3.6, 4.0, 4.4, 4.7, 5.0, 5.6, 5.8, 6.0, 6.2, 6.4, 6.6, 6.8, 7.3, 9.5, 13.0, 17.0, 40.};
//string quantity = "Eta"; double bins[] = {-2.4, -1.4, -1.2, -1.0, -0.8, -0.5, -0.2, 0, 0.2, 0.5, 0.8, 1.0, 1.2, 1.4, 2.4};
//string quantity = "Phi"; double bins[] = {-3.0, -1.8, -1.6, -1.2, -1.0, -0.7, -0.4, -0.2, 0, 0.2, 0.4, 0.7, 1.0, 1.2, 1.6, 1.8, 3.0};

//string quantity = "Pt"; double bins[] = {0.0, 2.0, 3.4, 4.0, 5.0, 6.0, 8.0, 10.0, 40.};
//string quantity = "Eta"; double bins[] = {0.0, 0.4, 0.6, 0.95, 1.2, 1.4, 1.6, 1.8, 2.4};

Systematic efficiency overplot

To better understand the results of the last part, this code will put all the different plots created previously in an image.

root overplot_efficiencies.cpp

You should get a result like this:

[image: ../../../../_images/Sys_Efficiency_overplot1d.png]Efficiency Systematic Overplot 1D

2D Efficiency Map

This code generates a 2D systematic efficiency overplot, it outputs a .root that contains the efficiency histograms that can be visualised by the root TBrowser.

root -l -b -q plot_sys_efficiency_2d.cpp

This is one of the graphs that will be generated.

[image: ../../../../_images/Sys_Efficiency_overplot2d.png]Efficiency Systematic Overplot 2D

It is noteworthy that the uncertainties presented above in the 2d map are already the quadrature sum of systematics and statistical uncertainties.

Electrons

Introduction

Electrons are measured in the CMS experiment combining the information from the inner tracker [https://cms.cern/index.php/detector/identifying-tracks] and the electromagnetic calorimeter [https://cms.cern/detector/measuring-energy/energy-electrons-and-photons-ecal] as summarized on an introductory page on Finding electrons and photons [https://cms.cern/news/finding-electrons-and-photons-cms-detector]. The signals from these systems are processed with CMSSW through subsequent steps to form electron candidates which are then available in the electron collection of the data files.

Electron 4-vector and track information

=== “Run 1 Data”

An example of an EDAnalyzer accessing electron information is available in the [ElectronAnalyzer](https://github.com/cms-opendata-analyses/PhysObjectExtractorTool/blob/2012/PhysObjectExtractor/src/ElectronAnalyzer.cc) of the Physics Object Extractor Tool (POET). The following header files needed for accessing electron information are included:

``` cpp
//classes to extract electron information
#include "DataFormats/EgammaCandidates/interface/GsfElectron.h"
#include "DataFormats/EgammaCandidates/interface/GsfElectronFwd.h"
#include "DataFormats/GsfTrackReco/interface/GsfTrack.h"
#include "RecoEgamma/EgammaTools/interface/ConversionTools.h"
#include "DataFormats/VertexReco/interface/Vertex.h"
#include "DataFormats/VertexReco/interface/VertexFwd.h"
```

In [ElectronAnalyzer.cc](https://github.com/cms-opendata-analyses/PhysObjectExtractorTool/blob/2012/PhysObjectExtractor/src/ElectronAnalyzer.cc), the electron four-vector elements are accessed as shown below.

``` cpp
Handle<reco::GsfElectronCollection> myelectrons;
iEvent.getByLabel(electronInput, myelectrons);

[...]

for (reco::GsfElectronCollection::const_iterator itElec=myelectrons->begin(); itElec!=myelectrons->end(); ++itElec){

  [...]

  electron_e.push_back(itElec->energy());
  electron_pt.push_back(itElec->pt());
  electron_px.push_back(itElec->px());
  electron_py.push_back(itElec->py());
  electron_pz.push_back(itElec->pz());
  electron_eta.push_back(itElec->eta());
  electron_phi.push_back(itElec->phi());

  [...]
}
```

Most charged physics objects are also connected to tracks from the CMS tracking detectors. The charge of the object can be queried directly:

``` cpp
  electron_ch.push_back(itElec->charge());
```

Information from tracks provides other kinematic quantities. Often, the most pertinent information about an object to access from its associated track is its impact parameter with respect to the primary interaction vertex. The access to the vertex collection is gained through the `getByLabel` method and the first elemement of the vertex collection gives the best estimate of the interaction point ("primary vertex" - `pv`):

``` cpp
  Handle<reco::VertexCollection> vertices;
  iEvent.getByLabel(InputTag("offlinePrimaryVertices"), vertices);
  math::XYZPoint pv(vertices->begin()->position());
```

The access to the track is provided through

``` cpp
  auto trk = itElec->gsfTrack();
```

for each electron in the electron loop, and the impact parameter information is obtained with

``` cpp
  electron_dxy.push_back(trk->dxy(pv));
  electron_dz.push_back(trk->dz(pv));
  electron_dxyError.push_back(trk->d0Error());
  electron_dzError.push_back(trk->dzError());
```


=== “Run 2 Data”

An example of an EDAnalyzer accessing electron information is available in the [ElectronAnalyzer](https://github.com/cms-opendata-analyses/PhysObjectExtractorTool/blob/2015MiniAOD/PhysObjectExtractor/src/ElectronAnalyzer.cc) of the Physics Object Extractor Tool (POET). The following header files needed for accessing electron information are included:

``` cpp
//classes to extract electron information
#include "DataFormats/PatCandidates/interface/Electron.h"
#include "DataFormats/VertexReco/interface/VertexFwd.h"
#include "DataFormats/VertexReco/interface/Vertex.h"
```

In [ElectronAnalyzer.cc](https://github.com/cms-opendata-analyses/PhysObjectExtractorTool/blob/2015MiniAOD/PhysObjectExtractor/src/ElectronAnalyzer.cc), the electron four-vector elements are accessed from the `pat::Electron` collection as shown below.

``` cpp
Handle<pat::ElectronCollection> electrons;
iEvent.getByToken(electronToken_, electrons);

[...]

for (const pat::Electron &el : *electrons)
{
  electron_e.push_back(el.energy());
  electron_pt.push_back(el.pt());
  electron_px.push_back(el.px());
  electron_py.push_back(el.py());
  electron_pz.push_back(el.pz());
  electron_eta.push_back(el.eta());
  electron_phi.push_back(el.phi());

  [...]
}
```

with `electronToken_` defined as a member of the `ElectronAnalyzer` class and its value read from the [configuration file](https://github.com/cms-opendata-analyses/PhysObjectExtractorTool/blob/2015MiniAOD/PhysObjectExtractor/python/poet_cfg.py).

Most charged physics objects are also connected to tracks from the CMS tracking detectors. The charge of the object can be queried directly:

``` cpp
  electron_ch.push_back(el.charge());
```

Information from tracks provides other kinematic quantities. Often, the most pertinent information about an object to access from its associated track is its impact parameter with respect to the primary interaction vertex. The access to the vertex collection is gained through the `getByToken` method and the first elemement of the vertex collection gives the best estimate of the interaction point ("primary vertex" - `pv`):

``` cpp
  Handle<reco::VertexCollection> vertices;
  iEvent.getByToken(vtxToken_, vertices);
  math::XYZPoint pv(vertices->begin()->position());
```

again with `vtxToken_` defined as a member of the `ElectronAnalyzer` class and its value read from the [configuration file](https://github.com/cms-opendata-analyses/PhysObjectExtractorTool/blob/2015MiniAOD/PhysObjectExtractor/python/poet_cfg.py).

The access to the track is provided through member function `gsfTrack`, and for each electron in the electron loop, and the impact parameter information is obtained with

``` cpp
  electron_dxy.push_back(el.gsfTrack()->dxy(pv));
  electron_dz.push_back(el.gsfTrack()->dz(pv));
  electron_dxyError.push_back(el.gsfTrack()->d0Error());
  electron_dzError.push_back(el.gsfTrack()->dzError());
```


Electron identification

As explained in the Physics Object page, a mandatory task in the physics analysis is to identify electrons, i.e. to separate “real” objects from “fakes”. The criteria depend on the type of analysis.

The selection is based on cuts on a small number of variables. Different thresholds are used for electrons found in the ECAL barrel and the ECAL endcap. Selection variables may be categorized in three groups:

	electron ID variables (shower shape, track cluster matching etc)

	isolation variables

	conversion rejection variables.

=== “Run 1 Data”

The standard identification and isolation algorithm results can be accessed from the [electron object class](https://cmsdoxygen.web.cern.ch/cmsdoxygen/CMSSW_5_3_30/doc/html/d0/d6d/classreco_1_1GsfElectron.html) and the recommended working points are documented in the the [public data page for electron for 2010 and 2011](https://twiki.cern.ch/twiki/bin/view/CMSPublic/EgammaPublicData). The values implemented in the example code [ElectronAnalyzer.cc](https://github.com/cms-opendata-analyses/PhysObjectExtractorTool/blob/2012/PhysObjectExtractor/src/ElectronAnalyzer.cc) are those recommended for 2012.

Three levels of identification criteria are defined

``` cpp
bool isLoose = false, isMedium = false, isTight = false;
```

For electrons in the electromagnetic calorimeter barrel area, they are determined as follows:

``` cpp
if ( abs(itElec->eta()) <= 1.479 ) {   
  if ( abs(itElec->deltaEtaSuperClusterTrackAtVtx())<.007 && 
        abs(itElec->deltaPhiSuperClusterTrackAtVtx())<.15 && 
        itElec->sigmaIetaIeta()<.01 && itElec->hadronicOverEm()<.12 && 
        abs(trk->dxy(pv))<.02 && abs(trk->dz(pv))<.2 && 
        missing_hits<=1 && passelectronveto==true &&
        abs(1/itElec->ecalEnergy()-1/(itElec->ecalEnergy()/itElec->eSuperClusterOverP()))<.05 
        && el_pfIso<.15){
    
    isLoose = true;
    
    if ( abs(itElec->deltaEtaSuperClusterTrackAtVtx())<.004 && 
          abs(itElec->deltaPhiSuperClusterTrackAtVtx())<.06 && 
          abs(trk->dz(pv))<.1 ){
      isMedium = true;
      
      if (abs(itElec->deltaPhiSuperClusterTrackAtVtx())<.03 && 
          missing_hits<=0 && el_pfIso<.10 ){
        isTight = true;
      }
    }
  }
}
```

where

- `deltaEta...` and `deltaPhi...` indicate how the electron's trajectory varies between the track and the ECAL cluster,
with smaller variations preferred for the "tightest" quality levels.
- `sigmaIetaIeta` describes the variance of the ECAL cluster in psuedorapidity ("ieta" is an integer index for this angle).
- `hadronicOverEm` describes the ratio of HCAL to ECAL energy deposits, which should be small for good quality electrons.
- The impact parameters `dxy` and `dz` should also be small for good quality electrons produced in the initial collision.
- Missing hits are gaps in the trajectory through the inner tracker (shouldn't be any!)
- The conversion veto is an algorithm that rejects electrons coming from photon conversions in the tracker, which should instead be reconstructed as part of the photon.
- The criterion using `ecalEnergy` and `eSuperClusterOverP` compares the differences between the electron's energy and momentum measurements, which should be very similar to each other for good electrons.
- `el_pfIso` represents how much energy, relative to the electron's, within a cone around the electron comes from other particle-flow candidates. If this value is small the electron is likely "isolated" in the local region.

The isolation variable `el_pfIso`, based on a cone size of 0.3 around the electron, is defined with

``` cpp
if (itElec->passingPflowPreselection()) {
  double rho = 0;
  if(rhoHandle.isValid()) rho = *(rhoHandle.product());
  double Aeff = effectiveArea0p3cone(itElec->eta());
  auto iso03 = itElec->pfIsolationVariables();
  el_pfIso = (iso03.chargedHadronIso + std::max(0.0,iso03.neutralHadronIso + iso03.photonIso - rho*Aeff))/itElec->pt();
} 
```

In the endcap part of the electromagnetic calorimeter, the procedure is similar with different values.

!!! Note "To do"
 - The isolation snippet needs more explanation
 - Check if the PR fixing the problem with missing hits affects the identification code snippet.

=== “Run 2 Data”

The standard identification and isolation algorithm results can be accessed from the [pat electron object class](https://cmsdoxygen.web.cern.ch/cmsdoxygen/CMSSW_7_6_7/doc/html/d2/d1f/classpat_1_1Electron.html). Three levels of identification criteria are defined: loose, medium, and tight. An example selection is implemented in [ElectronAnalyzer.cc](https://github.com/cms-opendata-analyses/PhysObjectExtractorTool/blob/2015MiniAOD/PhysObjectExtractor/src/ElectronAnalyzer.cc):

``` cpp
  electron_isLoose.push_back(el.electronID("cutBasedElectronID-PHYS14-PU20bx25-V2-standalone-loose"));
  electron_isMedium.push_back(el.electronID("cutBasedElectronID-PHYS14-PU20bx25-V2-standalone-medium"));
  electron_isTight.push_back(el.electronID("cutBasedElectronID-PHYS14-PU20bx25-V2-standalone-tight"));
```

!!! Warning
 The choice of recommended electron ID criteria for 2015 data needs to be verified. In addition to `PHYS14_PU20bx25_V2` other sets, for example `Spring15_25ns_V1`, are available.

Isolation computed from PF Clusters, is available through the methods `ecalPFClusterIso` and `hcalPFClusterIso`:

``` cpp
  electron_iso.push_back(el.ecalPFClusterIso());
```

!!! Note "To do"
 - More information is needed for particle flow (PF) clusters
 - More information is needed for the values returned by `ecalPFClusterIso` and if the description in the [class header](https://github.com/cms-sw/cmssw/blob/CMSSW_7_6_X/DataFormats/PatCandidates/interface/Electron.h#L121-L131) still holds.

Jets

!!! Note “To do”
Only basic 4-vector access information has been added for Run 2 data

What are jets?

Jets are spatially-grouped collections of long-lived particles that are produced when a quark or gluon hadronizes. The kinematic properties of jets resemble that of the initial partons that produced them. In the CMS language, jets are made up of many particles, with the following predictable energy composition:

	~65% charged hadrons

	~25% photons (from neutral pions)

	~10% neutral hadrons

Jets are very messy! Hadronization and the subsequent decays of unstable hadrons can produce 100s of particles near each other in the CMS detector. Hence these particles are rarely analyzed individually. How can we determine which particle candidates should be included in each jet?

Clustering

Jets can be clustered using a variety of different inputs from the CMS detector. “CaloJets” use only calorimeter energy deposits. “GenJets” use generated particles from a simulation. But by far the most common are “PFJets”, from particle flow candidates.

The result of the CMS Particle Flow algorithm is a list of particle candidates that account for all inner-tracker and muon tracks and all above-threshold energy deposits in the calorimeters. These particles are formed into jets using a “clustering algorithm”. The most common algorithm used by CMS is the “anti-kt” algorithm, which is abbreviated “AK”. It iterates over particle pairs and finds the two (i and j) that are the closest in some distance measure and determines whether to combine them:

[image: ../../../_images/cluster_eq.png]cluster_eq

[image: ../../../_images/clustering.png]cluster_im

The momentum power (-2) used by the anti-kt algorithm means that higher-momentum particles are clustered first. This leads to jets with a round shape that tend to be centered on the hardest particle. In CMS software this clustering is implemented using the fastjet [https://www.fastjet.fr] package.

[image: ../../../_images/antikt.png]jet_depo

Pileup

Inevitably, the list of particle flow candidates contains particles that did not originate from the primary interaction point. CMS experiences multiple simultaneous collisions, called “pileup”, during each “bunch crossing” of the LHC, so particles from multiple collisions coexist in the detector. There are various methods to remove their contributions from jets:

	Charged hadron subtraction CHS [http://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/JME-14-001/index.html]: all charged hadron candidates are associated with a track. If the track is not associated with the primary vertex, that charged hadron can be removed from the list. CHS is limited to the region of the detector covered by the inner tracker. The pileup contribution to neutral hadrons has to be removed mathematically which will be discussed later.

	PileUp Per Particle Identification (PUPPI, available in Run 2): CHS is applied, and then all remaining particles are weighted based on their likelihood of arising from pileup. This method is more stable and performant in high pileup scenarios such as the upcoming HL-LHC era.

Accessing Jets in CMS Software

=== “Run 1 Data”

Two examples of EDAnalyzers accessing jet information are available in the Physics Object Extractor Tool (POET):

- [JetAnalyzer](https://github.com/cms-opendata-analyses/PhysObjectExtractorTool/blob/2012/PhysObjectExtractor/src/JetAnalyzer.cc) accessing jets from the `PFJetCollection`
- [PatJetAnalyzer](https://github.com/cms-opendata-analyses/PhysObjectExtractorTool/blob/2012/PhysObjectExtractor/src/PatJetAnalyzer.cc) accessing jets from `std::vector<pat::Jet>` collection using "Physics Analysis Toolkit" (PAT) format in which jets are easier to work with.

The following header files needed for accessing jet information are included:

``` cpp
//classes to extract PFJet information
#include "DataFormats/JetReco/interface/PFJet.h"
#include "DataFormats/JetReco/interface/PFJetCollection.h"
#include "DataFormats/BTauReco/interface/JetTag.h"
#include "CondFormats/JetMETObjects/interface/JetCorrectionUncertainty.h"
#include "CondFormats/JetMETObjects/interface/FactorizedJetCorrector.h"
#include "CondFormats/JetMETObjects/interface/JetCorrectorParameters.h"
#include "CondFormats/JetMETObjects/interface/SimpleJetCorrector.h"
#include "CondFormats/JetMETObjects/interface/SimpleJetCorrectionUncertainty.h"
#include "DataFormats/VertexReco/interface/Vertex.h"
#include "DataFormats/VertexReco/interface/VertexFwd.h"

#include "DataFormats/JetReco/interface/Jet.h"
#include "SimDataFormats/JetMatching/interface/JetFlavourInfo.h"
#include "SimDataFormats/JetMatching/interface/JetFlavourInfoMatching.h"
```

Jets software classes have the same basic 4-vector methods as the objects discussed in the [Common Tools](./tools.md) page. In [JetAnalyzer.cc](https://github.com/cms-opendata-analyses/PhysObjectExtractorTool/blob/2012/PhysObjectExtractor/src/JetAnalyzer.cc), the jet four-vector elements are accessed (with `jetInput` passed as `"ak5PFJets"` in the [configuration file](https://github.com/cms-opendata-analyses/PhysObjectExtractorTool/blob/2012/PhysObjectExtractor/python/poet_cfg.py)) :

``` cpp

Handle<reco::PFJetCollection> myjets;
iEvent.getByLabel(jetInput, myjets);

[...]

for (reco::PFJetCollection::const_iterator itjet=myjets->begin(); itjet!=myjets->end(); ++itjet){

[...]

    jet_e.push_back(itjet->energy());
    jet_pt.push_back(itjet->pt());
    jet_px.push_back(itjet->px());
    jet_py.push_back(itjet->py());
    jet_pz.push_back(itjet->pz());
    jet_eta.push_back(itjet->eta());
    jet_phi.push_back(itjet->phi());

[...]

}

```


=== “Run 2 Data”

An example of an EDAnalyzer accessing jet information is available in the [JetAnalyzer](https://github.com/cms-opendata-analyses/PhysObjectExtractorTool/blob/2015MiniAOD/PhysObjectExtractor/src/JetAnalyzer.cc) of the Physics Object Extractor Tool (POET). The following header file needed for accessing MET information is included:

```cpp
//class to extract jet information
#include "DataFormats/PatCandidates/interface/Jet.h"
```

Jets software classes have the same basic 4-vector methods as the objects discussed in the [Common Tools](./tools.md) page. In [JetAnalyzer.cc](https://github.com/cms-opendata-analyses/PhysObjectExtractorTool/blob/2015MiniAOD/PhysObjectExtractor/src/JetAnalyzer.cc), the jet four-vector elements are accessed from the `pat::Jet` collection as shown below

``` cpp

Handle<pat::JetCollection> jets;
iEvent.getByToken(jetToken_, jets);

[...]

for (const pat::Jet &jet : *jets)
{
    jet_e.push_back(jet.energy());
    jet_pt.push_back(jet.pt());
    jet_px.push_back(jet.px());
    jet_py.push_back(jet.py());
    jet_pz.push_back(jet.pz());
    jet_eta.push_back(jet.eta());
    jet_phi.push_back(jet.phi());

[...]

}
```

`jetToken_` is defined as a member of the `MetAnalyzer` class and its value read from the [configuration file](https://github.com/cms-opendata-analyses/PhysObjectExtractorTool/blob/2015MiniAOD/PhysObjectExtractor/python/poet_cfg.py).

Jet ID

=== “Run 1 Data”

Particle-flow jets are not immune to noise in the detector, and jets used in analyses should be filtered to remove noise jets. CMS has defined a [Jet ID](http://cdsweb.cern.ch/record/1279362) with criteria for good jets:

>The PFlow jets are required to have charged hadron fraction CHF > 0.0 if within tracking fiducial region of |eta| < 2.4, neutral hadron fraction NHF < 1.0, charged electromagnetic (electron) fraction CEF < 1.0, and neutral electromagnetic (photon) fraction NEF < 1.0. These requirements remove fake jets arising from spurious energy depositions in a single sub-detector.

These criteria demonstrate how particle-flow jets combine information across subdetectors. Jets will typically have energy from electrons and photons, but those fractions of the total energy should be less than one. Similarly, jets should have some energy from charged hadrons if they overlap the inner tracker, and all the energy should not come from neutral hadrons. A mixture of energy sources is expected for genuine jets. All of these energy fractions (and more) can be accessed from the jet objects.

You can use the [PFJet class definition](https://github.com/cms-sw/cmssw/blob/CMSSW_5_3_X/DataFormats/JetReco/interface/PFJet.h) of the CMSSW DataFormats package to see what methods are available for PFJets. It is rendered for maybe easier readability in the [CMSSW software documentation](https://cmsdoxygen.web.cern.ch/cmsdoxygen/CMSSW_5_3_30/doc/html/d3/d08/classreco_1_1PFJet.html). We can implement a jet ID to reject jets that do not pass so that these jets are not stored in any of the tree branches. This code show an implementation of Jet ID cuts while also applying a minimum momentum threshold.

``` cpp
for (reco::PFJetCollection::const_iterator itjet=jets->begin(); itjet!=jets->end(); ++itjet){
if (itjet->pt > jet_min_pt && itjet->chargedHadronEnergyFraction() > 0 && itjet->neutralHadronEnergyFraction() < 1.0 &&
    itjet->electronEnergyFraction() < 1.0 && itjet->photonEnergyFraction() < 1.0){

    // jet calculations

```

!!! Note "Note"
 - The code snippet above is not part of the example analyzer.

=== “Run 2 Data”

Work in progress

Jet corrections

=== “Run 1 Data”

!!! Note "To do"
 Description of jet corrections needs to be added, see [the workshop tutorial](https://cms-opendata-workshop.github.io/workshop2021-lesson-advobjects/04-jecjer/index.html)

=== “Run 2 Data”

Work in progress

B Tagging Algorithms

Jet reconstruction and identification is an important part of the analyses at the LHC. A jet may contain the hadronization products of any quark or gluon, or possibly the decay products of more massive particles such as W or Higgs bosons. Several b tagging” algorithms exist to identify jets from the hadronization of b quarks, which have unique properties that distinguish them from light quark or gluon jets.

Tagging algorithms first connect the jets with good quality tracks that are either associated with one of the jet’s particle flow candidates or within a nearby cone. Both tracks and “secondary vertices” (track vertices from the decays of b hadrons) can be used in track-based, vertex-based, or “combined” tagging algorithms. The specific details depend upon the algorithm use. However, they all exploit properties of b hadrons such as:

	long lifetime

	large mass

	high track multiplicity

	large semiloptonic branching fraction

	hard fragmentation function.

Tagging algorithms are Algorithms that are used for b-tagging:

	Track Counting: identifies a b jet if it contains at least N tracks with significantly non-zero impact parameters.

	Jet Probability: combines information from all selected tracks in the jet and uses probability density functions to assign a probability to each track.

	Soft Muon and Soft Electron: identifies b jets by searching for a lepton from a semi-leptonic b decay.

	Simple Secondary Vertex: reconstructs the b decay vertex and calculates a discriminator using related kinematic variables.

	Combined Secondary Vertex: exploits all known kinematic variables of the jets, information about track impact parameter significance and the secondary vertices to distinguish b jets. This tagger became the default CMS algorithm.

These algorithms produce a single, real number (often the output of an MVA) called a b tagging “discriminator” for each jet. The more positive the discriminator value, the more likely it is that this jet contained b hadrons.

Accessing Tagging Information

=== “Run 1 Data”

In [PatJetAnalyzer.cc](https://github.com/cms-opendata-analyses/PhysObjectExtractorTool/blob/2012/PhysObjectExtractor/src/PatJetAnalyzer.cc) we access the information from the Combined Secondary Vertex (CSV) b tagging algorithm and associate discriminator values with the jets. The CSV values are stored in a separate collection in the POET files called a JetTagCollection, which is effectively a vector of associations between jet references and float values (such as a b-tagging discriminator).

``` cpp
#include "DataFormats/BTauReco/interface/JetTag.h"
#include "DataFormats/PatCandidates/interface/Jet.h"

[...]

Handle<std::vector<pat::Jet>> myjets;
iEvent.getByLabel(jetInput, myjets);

[...]

//define b-tag discriminators handle and get the discriminators

for (std::vector<pat::Jet>::const_iterator itjet=myjets->begin(); itjet!=myjets->end(); ++itjet){
    
    [...]
    // from the btag collection get the float (second) from the association to this jet.
    jet_btag.push_back(itjet->bDiscriminator("combinedSecondaryVertexBJetTags"));
}

```

You can use the command edmDumpEventContent to investiate other b tagging algorithms available as edm::AssociationVector types. This is an example opening the collections for two alternate taggers--the MVA version of CSV and the high purity track counting tagger, which was the most common tagger in 2011:

``` cpp

// inside the jet loop
jet_btagheb.push_back(itjet->bDiscriminator("simpleSecondaryVertexHighEffBJetTags"));
jet_btagtc.push_back(itjet->bDiscriminator("trackCountingHighEffBJetTags"));
```

The distributions in ttbar events (excluding events with values of -9 where the tagger was not evaluated) are shown below. The track counting discriminant is quite different and ranges 0-30 or so.

![tagger_dist](https://cms-opendata-workshop.github.io/workshop-lesson-jetmet/assets/img/btagComp.png)

=== “Run 2 Data”

Work in progress

Working Points

=== “Run 1 Data”

A jet is considered "b tagged" if the discriminator value exceeds some threshold. Different thresholds will have different efficiencies for identifying true b quark jets and for mis-tagging light quark jets. As we saw for muons and other objects, a "loose" working point will allow the highest mis-tagging rate, while a "tight" working point will sacrifice some correct-tag efficiency to reduce mis-tagging. The [CSV algorithm has working points](https://twiki.cern.ch/twiki/bin/view/CMSPublic/BtagRecommendation2011OpenData) defined based on mis-tagging rate:

- Loose = ~10% mis-tagging = discriminator > 0.244
- Medium = ~1% mis-tagging = discriminator > 0.679
- Tight = ~0.1% mis-tagging = discriminator > 0.898

We can count the number of "Medium CSV" b-tagged jets by summing up the number of jets with discriminant values greater than 0.679. After adding a variable declaration and branch we can sum up the counter:

``` cpp

value_jet_nCSVM = 0;
for (std::vector<pat::Jet>::const_iterator itjet=myjets->begin(); itjet!=myjets->end(); ++itjet){
    // skipping bits
    jet_btag.push_back(itjet->bDiscriminator("combinedSecondaryVertexBJetTags"));
    if (jet_btag.at(value_jet_n) > 0.679) value_jet_nCSVM++;
}

```

We show distributions of the number CSV b jets at the medium working point in Drell-Yan events and top pair events. As expected there are significantly more b jets in the top pair sample.

![CSV_dist](https://cms-opendata-workshop.github.io/workshop-lesson-jetmet/assets/img/btagCount.png)

=== “Run 2 Data”

Work in progress

Data and Simulation Differences

When training a tagging algorithm, it is highly probable that the efficiencies for tagging different quark flavors as b jets will vary between simulation and data. These differences must be measured and corrected for using “scale factors” constructed from ratios of the efficiencies from different sources.

=== “Run 1 Data”

The figures below show examples of the b and light quark efficiencies and scale factors as a function of jet momentum [read more](https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsBTV13001). Corrections must be applied to make the b-tagging performance match between data and simulation. Read more about these corrections and their uncertainties [on this page](../../systematics/objectsuncertain/btaguncertain.md).

When training a tagging algorithm, it is highly probable that the efficiencies for tagging different quark flavors as b jets will vary between simulation and data. These differences must be measured and corrected for using "scale factors" constructed from ratios of the efficiencies from different sources. The figures below show examples of the b and light quark efficiencies and scale factors as a function of jet momentum [read more](https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsBTV13001).

!!! Note "To do"
 "The figures below" for both paragraphs are missing. Decide whether this part is valid for Run 2 as well.

=== “Run 2 Data”

Work in progress

MET

What is MET?

Missing transverse momentum [https://cds.cern.ch/record/1543527] is the negative vector sum of the transverse momenta of all particle flow candidates in an event. The magnitude of the missing transverse momentum vector is called missing transverse energy and referred to with the acronym “MET”. Since energy corrections are made to the particle flow jets, those corrections are propagated to MET by adding back the momentum vectors of the original jets and then subtracting the momentum vectors of the corrected jets. This correction is called “Type 1” and is standard for all CMS analyses. The jet energy corrections are discussed more deeply in the Jets page.

Accessing MET in CMS Software

=== “Run 1 Data”

An example of an EDAnalyzer accessing MET information is available in the [MetAnalyzer](https://github.com/cms-opendata-analyses/PhysObjectExtractorTool/blob/2012/PhysObjectExtractor/src/MetAnalyzer.cc) of the Physics Object Extractor Tool (POET). The following header files needed for accessing MET information are included:

``` cpp
//classes to extract PFMET information
#include "DataFormats/METReco/interface/PFMET.h"
#include "DataFormats/METReco/interface/PFMETFwd.h"
#include "DataFormats/PatCandidates/interface/MET.h"
```

In [MetAnalyzer.cc](https://github.com/cms-opendata-analyses/PhysObjectExtractorTool/blob/2012/PhysObjectExtractor/src/MetAnalyzer.cc) we open the particle flow MET module (with `metInput` passed as `"pfMet"` in the [configuration file](https://github.com/cms-opendata-analyses/PhysObjectExtractorTool/blob/2012/PhysObjectExtractor/python/poet_cfg.py)) and extract the magnitude and angle of the MET, the sum of all energy in the detector, and variables related to the “significance” of the MET. Note that MET quantities have a single value for the entire event, unlike the objects studied previously.

``` cpp
Handle<reco::PFMETCollection> mymets;
iEvent.getByLabel(metInput, mymets);

[...]

met_e = mymets->begin()->sumEt();
met_pt = mymets->begin()->pt();
met_px = mymets->begin()->px();
met_py = mymets->begin()->py();
met_phi = mymets->begin()->phi();
met_significance = mymets->begin()->significance();
```

The MET significance matrix could be accessed with:

``` cpp
auto cov = mymets->begin()->getSignificanceMatrix();
value_met_covxx = cov[0][0];
value_met_covxy = cov[0][1];
value_met_covyy = cov[1][1];
```

MET significance can be a useful tool: it describes the likelihood that the MET arose from noise or mismeasurement in the detector as opposed to a neutrino or similar non-interacting particle. The four-vectors of the other physics objects along with their uncertainties are required to compute the significance of the MET signature. MET that is directed nearly (anti)colinnear with a physics object is likely to arise from mismeasurement and should not have a large significance.

The difference between the Drell-Yan events with primarily fake MET and the top pair events with primarily genuine MET can be seen by drawing `met_pt` or by drawing `met_significance`. In both distributions the Drell-Yan events have smaller values than the top pair events.

=== “Run 2 Data”

An example of an EDAnalyzer accessing MET information is available in the [MetAnalyzer](https://github.com/cms-opendata-analyses/PhysObjectExtractorTool/blob/2015MiniAOD/PhysObjectExtractor/src/MetAnalyzer.cc) of the Physics Object Extractor Tool (POET). The following header file needed for accessing MET information is included:

``` cpp
//class to extract MET information
#include "DataFormats/PatCandidates/interface/MET.h"
```

In [MetAnalyzer.cc](https://github.com/cms-opendata-analyses/PhysObjectExtractorTool/blob/2015MiniAOD/PhysObjectExtractor/src/MetAnalyzer.cc) we open the particle flow MET module (with `metToken_` defined as a member of the `MetAnalyzer` class and its value read from the [configuration file](https://github.com/cms-opendata-analyses/PhysObjectExtractorTool/blob/2015MiniAOD/PhysObjectExtractor/python/poet_cfg.py)) and extract the magnitude and angle of the MET, the sum of all energy in the detector, and variables related to the “significance” of the MET. Note that MET quantities have a single value for the entire event, unlike the objects studied previously.

``` cpp
Handle<pat::METCollection> mets;
iEvent.getByToken(metToken_, mets);

[...]

met_e = met.sumEt();
met_pt = met.pt();
met_px = met.px();
met_py = met.py();
met_phi = met.phi();
met_significance = met.significance();
```

The MET significance matrix could be accessed with:

``` cpp
auto cov = met_significance->getSignificanceMatrix();
value_met_covxx = cov[0][0];
value_met_covxy = cov[0][1];
value_met_covyy = cov[1][1];
```

!!! Note "To do"
 Verify this snippet for matrix, it is taken (and minimally modified) from the Run 1 Met tutorial

MET significance can be a useful tool: it describes the likelihood that the MET arose from noise or mismeasurement in the detector as opposed to a neutrino or similar non-interacting particle. The four-vectors of the other physics objects along with their uncertainties are required to compute the significance of the MET signature. MET that is directed nearly (anti)colinnear with a physics object is likely to arise from mismeasurement and should not have a large significance.

The difference between the Drell-Yan events with primarily fake MET and the top pair events with primarily genuine MET can be seen by drawing `met_pt` or by drawing `met_significance`. In both distributions the Drell-Yan events have smaller values than the top pair events.

!!! Warning
This page is under construction

Muons

Introduction

Muons are measured in the CMS experiment combining the information from the inner tracker [https://cms.cern/index.php/detector/identifying-tracks] and the muon system [https://cms.cern/detector/detecting-muons]. The signals from these systems are processed with CMSSW through subsequent steps to form muon candidates which are then available in the muon collection of the data files.

Access to muon information

The Physics Objects page shows how to access muon collections, and which header files should be included in the C++ code in order to access all of their class information. The Common Tools page gives instructions to access all the basic kinematic information about any physics object.

Muon identification

=== “Run 1 Data”

As explained in the [Physics Object page](./objects#detector-information-for-identification), a mandatory task in the physics analysis is to identify muons, i.e. to separate “real” objects from “fakes”. The criteria depend on the type of analysis. The muon object has member functions available which can directly be used to select muon with "loose" or "tight" selection criteria. These are the corresponding lines in [MuonAnalyzer](https://github.com/cms-opendata-analyses/PhysObjectExtractorTool/blob/2012/PhysObjectExtractor/src/MuonAnalyzer.cc):

``` cpp
    muon_tightid.push_back(muon::isTightMuon(*itmuon, *vertices->begin()));
    muon_softid.push_back(muon::isSoftMuon(*itmuon, *vertices->begin()));
```

These functions need the interaction vertex as an input (in addition to the muon properties) and this is provided through the first elemement of the vertex collection `vertices` which gives the best estimate of the interaction point. The vertex collection is accessed with:

``` cpp
  Handle<reco::VertexCollection> vertices;
  iEvent.getByLabel(InputTag("offlinePrimaryVertices"), vertices);
```

In the physics analysis, hard processes that produce large angles between the final state objects are of interest. The final object will be separated from the other objects in the event or be “isolated”. For instance, an isolated muon might be produced in the decay of a W boson. In contrast, a non-isolated muon can come from a weak decay inside a jet.

Muon isolation is calculated from a combination of factors: energy from charged hadrons, energy from neutral hadrons, and energy from photons, all in a cone of radius dR < 0.3 or 0.4 around the muon. It is done as shown in this code snippet from [MuonAnalyzer](https://github.com/cms-opendata-analyses/PhysObjectExtractorTool/blob/2012/PhysObjectExtractor/src/MuonAnalyzer.cc):

``` cpp
    if (itmuon->isPFMuon() && itmuon->isPFIsolationValid()) {
      auto iso03 = itmuon->pfIsolationR03();
      muon_pfreliso03all.push_back((iso03.sumChargedHadronPt + iso03.sumNeutralHadronEt + iso03.sumPhotonEt)/itmuon->pt());
      auto iso04 = itmuon->pfIsolationR04();
      muon_pfreliso04all.push_back((iso04.sumChargedHadronPt + iso04.sumNeutralHadronEt + iso04.sumPhotonEt)/itmuon->pt());
    }
```

More details on the muon identification can be found in the [CMS SWGuide MuonID page](https://twiki.cern.ch/twiki/bin/view/CMSPublic/SWGuideMuonId). The full list of member function can be found in documentation of the [muon object class](https://cmsdoxygen.web.cern.ch/cmsdoxygen/CMSSW_5_3_30/doc/html/df/de3/classreco_1_1Muon.html).

=== “Run 2 Data”

As explained in the [Physics Object page](./objects#detector-information-for-identification), a mandatory task in the physics analysis is to identify muons, i.e. to separate “real” objects from “fakes”. The criteria depend on the type of analysis. The muon object has member functions available which can directly be used to select muon with "loose" or "tight" selection criteria. These are the corresponding lines in [MuonAnalyzer](https://github.com/cms-opendata-analyses/PhysObjectExtractorTool/blob/2015MiniAOD/PhysObjectExtractor/src/MuonAnalyzer.cc):

``` cpp
  muon_isSoft.push_back(mu.isSoftMuon(PV));
  muon_isTight.push_back(mu.isTightMuon(PV));
```

These functions need the interaction vertex as an input (in addition to the muon properties) and this is provided through the first elemement of the vertex collection `vertices` which gives the best estimate of the interaction point. The vertex collection is accessed with:

``` cpp
  Handle<reco::VertexCollection> vertices;
  iEvent.getByToken(vtxToken_, vertices);
  const reco::Vertex &PV = vertices->front();
```

with `vtxToken_` defined as a member of the `MuonAnalyzer` class and its value read from the [configuration file](https://github.com/cms-opendata-analyses/PhysObjectExtractorTool/blob/2015MiniAOD/PhysObjectExtractor/python/poet_cfg.py) in a similar way as for the muon collection.

In the physics analysis, hard processes that produce large angles between the final state objects are of interest. The final object will be separated from the other objects in the event or be “isolated”. For instance, an isolated muon might be produced in the decay of a W boson. In contrast, a non-isolated muon can come from a weak decay inside a jet.

Muon isolation is calculated from a combination of factors: energy from charged hadrons, energy from neutral hadrons, and energy from photons, all in a cone of radius dR < 0.3 or 0.4 around the muon. It is done as shown in this code snippet from [MuonAnalyzer](https://github.com/cms-opendata-analyses/PhysObjectExtractorTool/blob/2015MiniAOD/PhysObjectExtractor/src/MuonAnalyzer.cc):

``` cpp
  auto iso03 = mu.pfIsolationR03();
  muon_pfreliso03all.push_back((iso03.sumChargedHadronPt + iso03.sumNeutralHadronEt + iso03.sumPhotonEt)/mu.pt());
  auto iso04 = mu.pfIsolationR04();
  muon_pfreliso04all.push_back((iso04.sumChargedHadronPt + iso04.sumNeutralHadronEt + iso04.sumPhotonEt)/mu.pt());
```

More details on the muon identification can be found in the [CMS SWGuide MuonID page](https://twiki.cern.ch/twiki/bin/view/CMSPublic/SWGuideMuonId). The full list of member function can be found in documentation of the [PAT muon object class](https://cmsdoxygen.web.cern.ch/cmsdoxygen/CMSSW_7_6_7/doc/html/d6/d13/classpat_1_1Muon.html).

Further muon corrections

There are misalignments in the CMS detector that make the reconstruction of muon momentum biased. The CMS reconstruction software does not fully correct these misalignments and additional corrections are needed to remove the bias. Correcting the misalignments is important when precision measurements are done using the muon momentum, because the bias in muon momentum will affect the results. However, if the measurement is not sensitive to the exact muon momentum, applying these corrections is not necessary.

The Muon Momentum Scale Corrections

The Muon Momentum Scale Corrections, also known as the Rochester Corrections, are available in the MuonCorrectionsTool [https://github.com/cms-legacydata-analyses/MuonCorrectionsTool]. The correction parameters have been extracted in a two step method. In the first step, initial corrections are obtained in bins of the charge of the muon and the η and ϕ coordinates of the muon track. The reconstruction bias in muon momentum depends on these variables. In the second step, the corrections are fine tuned using the mass of the Z boson.

The corrections for data and Monte Carlo (MC) are different since the MC events start with no biases but they can be induced during the reconstruction. Corrections have been extracted for both data and MC events.

In the MuonCorrectionsTool, the Run1 Rochester Corrections are added to two datasets as an example: a 2012 dataset and a MC dataset. A plot is created to check that the corrections were applied correctly. Creating the plot requires selections and the produced dataset contains only a part of the initial dataset. These selections can be skipped when the plot is not needed and a corrected version of the whole dataset is wanted as a result. Below you can find instructions on how to run the example code, how to apply the corrections to a different dataset and how to apply the corrections when you don’t want to create the plot/make the selections. The official code for the Rochester Corrections can be found in the RochesterCorrections directory. The example code for applying the corrections is in the Test directory.

!!! Warning
The following example does not need the CMSSW environment but it requires ROOT. This code was written using the ROOT version 6.22.08. If you are using an older version, you might get errors running the code. In this case, try using rochcor2012wasym_old.h instead of rochcor2012wasym.h. You can do this by changing the first line of rochcor2012wasym.cc to #include "rochcor2012wasym_old.h".

Applying the corrections to data and MC

In the Test directory you can find Analysis.C, which is the example code for adding the corrections. The main function of Analysis.C is simply used for calling the applyCorrections function which takes as a parameter the name of the ROOT-file (without the .root-part), path to the ROOT-file, the name of the TTree, a boolean value of whether the file contains data (true) or MC (false) and a boolean variable of whether you want to correct the whole dataset (true) or make the selections needed for the plot (false).

void Analysis::main()
{
 // Data
 applyCorrections("Run2012BC_DoubleMuParked_Muons", "root://eospublic.cern.ch//eos/opendata/cms/derived-data/AOD2NanoAODOutreachTool/Run2012BC_DoubleMuParked_Muons.root", "Events", true, false);

 // MC
 applyCorrections("ZZTo2e2mu", "root://eospublic.cern.ch//eos/opendata/cms/upload/stefan/HiggsToFourLeptonsNanoAODOutreachAnalysis/ZZTo2e2mu.root", "Events", false, false);
}

The first thing applyCorrections does is create a TTree from the ROOT-file. Then variables for holding the values read from the tree are created and branch addresses are set so that the variables are populated when looping over events. An output file, new branches for the corrected values and a few variables needed for the corrections are also created.

int applyCorrections(string filename, string pathToFile, string treeName, bool isData, bool correctAll) {
 // Create TTree from ROOT file
 TFile *f1 = TFile::Open((pathToFile).c_str());
 TTree *DataTree = (TTree*)f1->Get("Events");

 //Variables to hold values read from the tree
 int maxmuon=1000;
 UInt_t nMuon = 0;
 Float_t Muon_pt[maxmuon];
 Float_t Muon_eta[maxmuon];
 Float_t Muon_phi[maxmuon];
 Float_t Muon_mass[maxmuon];
 Int_t Muon_charge[maxmuon];

 //Set addresses to make the tree populate the variables when reading an entry
 DataTree->SetBranchAddress("nMuon", &nMuon);
 DataTree->SetBranchAddress("Muon_pt", &Muon_pt);
 DataTree->SetBranchAddress("Muon_eta", &Muon_eta);
 DataTree->SetBranchAddress("Muon_phi", &Muon_phi);
 DataTree->SetBranchAddress("Muon_mass", &Muon_mass);
 DataTree->SetBranchAddress("Muon_charge", &Muon_charge);

Next, the events in the TTree are looped over and the corrections are applied to the muons. The boolean variable correctAll is used here to determine whether to correct all muons in the dataset or to make the selections required for the plot. The invariant mass of μ+μ- is used in the plot, which is why the events are filtered to muon pairs with opposite charges.

 // Loop over events
 Int_t nEntries = (Int_t)DataTree->GetEntries();

 for (Int_t k=0; k<nEntries; k++) {
 DataTree->GetEntry(k);

 if (correctAll) { // Correct all muons in dataset
 if (nMuon > 0) {
 ...
 }
 } else { // Correct muons that pass the selections
 // Select events with exactly two muons
 if (nMuon == 2) {
 // Select events with two muons of opposite charge
 if (Muon_charge[0] != Muon_charge[1]) {
 ...
 }
 }
 }

Whether all muons or only selected ones are being corrected, it is done in the loop below that loops over all the muons in an event and applies the corrections. The functions for applying the Rochester Corrections take as a parameter a TLorentzVector, which is a four-vector that describes the muons momentum and energy. A TLorentzVector is created for each muon using the muon’s pt, eta, phi and mass. As mentioned earlier, the muon momentum scale corrections are different for data and MC and therefore there are separate functions for both: momcor_data and momcor_mc. These functions can be found in rochcor2012wasym.cc if you want to take a closer look at them.

The corrected values are stored in the same TLorentzVectors after calling the correction functions. The values are then extracted from the TLorentzVecotrs and saved to the new variables. The new TTree is then filled with the new values.

 // Loop over muons in event
 for (UInt_t i=0; i<nMuon; i++) {
 // Create TLorentzVector
 TLorentzVector mu;
 mu.SetPtEtaPhiM(Muon_pt[i], Muon_eta[i], Muon_phi[i], Muon_mass[i]);

 // Apply the corrections
 if (isData) {
 rmcor.momcor_data(mu, Muon_charge[i], runopt, qter);
 } else {
 rmcor.momcor_mc(mu, Muon_charge[i], ntrk, qter);
 }

 // Save corrected values
 Muon_pt_cor[i] = mu.Pt();
 Muon_eta_cor[i] = mu.Eta();
 Muon_phi_cor[i] = mu.Phi();
 Muon_mass_cor[i] = mu.M();
 }

 DataTreeCor->Fill();

When only the selected muons are being corrected, the code does more than just apply the corrections. Both the uncorrected and corrected invariant mass of μ+μ- is computed and saved to a branch. The MuonCorrectionsTool plot is made in bins of eta of μ+ and eta of μ- and new branches are filled for those variables.

 // Compute invariant mass of the dimuon system
 Dimuon_mass = computeInvariantMass(Muon_pt[0], Muon_pt[1], Muon_eta[0], Muon_eta[1], Muon_phi[0], Muon_phi[1], Muon_mass[0], Muon_mass[1]);

 // Choose positive and negative muons' etas
 if (Muon_charge[0] > 0) {
 Muon_eta_pos = Muon_eta[0];
 Muon_eta_neg = Muon_eta[1];
 } else {
 Muon_eta_pos = Muon_eta[1];
 Muon_eta_neg = Muon_eta[0];
 }

 // Compute invariant mass of the corrected dimuon system
 Dimuon_mass_cor = computeInvariantMass(Muon_pt_cor[0], Muon_pt_cor[1], Muon_eta_cor[0], Muon_eta_cor[1], Muon_phi_cor[0], Muon_phi_cor[1], Muon_mass_cor[0], Muon_mass_cor[1]);

Finally, the new TTree is written to the output file.

 std::cout << "Writing tree to ouput file" << std::endl;

 //Save the new tree
 DataTreeCor->Write();

Running the code

	Open ROOT in terminal

root

	Compile muresolution.cc, rochcor2012wasym.cc and Analysis.C

.L RochesterCorrections/muresolution.cc++
.L RochesterCorrections/rochcor2012wasym.cc++
.L RochesterCorrections/Test/Analysis.C+

	Run the main function

Analysis pf
pf.main()

	To create the plot, compile Plot.C and run the main function

.L RochesterCorrections/Test/Plot.C+
main()

Applying the corrections to a different dataset

You can use the example code to apply the corrections to different datasets. However, a few changes needs to be made for the code to work correctly. The first thing that needs to be changed is of course the function call in the main function. Call applyCorrections using the parameters that correspond your dataset. Remember that for the first boolean parameter true means your ROOT file contains data and false means it contains MC. For the last parameter, true means you want to correct all muons without making selections and false means you want to make the selections needed for the MuonCorrectionsTool plot.

void Analysis::main()
{
 // Your dataset
 applyCorrections("nameOfFile", "pathToFile", "treeName", isData, correctAll);
}

The second thing you need to do is check the names and data types of the branches in your dataset. For example, instead of the name nMuon you might have numberOfMuons and instead of data type Muon_pt[nMuon] you might have vector<float> Muon_pt. The correct name needs to be changed to the branch address and the data type needs to be corrected. If you have vector, you might need to change Muon_pt[i] to Muon_pt->at(i) or something similiar later in the code. Example:

 //Variables to hold values read from the tree
 int maxmuon=1000;
 UInt_t nMuon = 0;
 vector<float>* Muon_pt;

 //Set addresses to make the tree populate the variables when reading an entry
 DataTree->SetBranchAddress("numberOfMuons", &nMuon);
 DataTree->SetBranchAddress("Muon_pt", &Muon_pt);

Correcting the dataset without making selections

If you want to correct all muons without making the selections needed for the MuonCorrectionsTool plot, simply give true as the last parameter when calling applyCorrections. The code will then loop through the events, select events with muons and correct the muons.

Physics Objects

Description

The CMS is a giant detector that acts like a camera that “photographs” particle collisions, allowing us to interpret their nature.

Certainly we cannot directly observe all the particles created in the collisions because some of them decay very quickly or simply do not interact with our detector. However, we can infer their presence. If they decay to other stable particles and interact with the apparatus, they leave signals in the CMS subdetectors. These signals are used to reconstruct the decay products or infer their presence; we call these physics objects. These objects could be electrons, muons, jets, missing energy, etc., but also lower level objects like tracks. For the current releases of open data, we store them in ROOT files following the EDM data model in AOD format.

In the CERN Open Portal site one can find a description of these physical objects and a list of them corresponding to 2010 [http://opendata.cern.ch/docs/cms-physics-objects-2010] and 2011/2012 [http://opendata.cern.ch/docs/cms-physics-objects-2011] releases of open data. For Run 1 data, this guide has the most uptodate content with the corresponding code snippets. For Run 2 data from 2015, a detailed listing [https://twiki.cern.ch/twiki/bin/view/CMSPublic/WorkBookMiniAOD2015#High_level_physics_objects] is available in the CMS WorkBook.

The code examples to which this guide mainly refers to are:

=== “Run 1 Data”

- [Physics Objects Extractor Tool (POET)](https://github.com/cms-opendata-analyses/PhysObjectExtractorTool/tree/2012): shows how to extract physics (objects) information and gives examples of methods or tools needed for processing them. For the sake of clarity, [EDAnalyzer modules](https://github.com/cms-opendata-analyses/PhysObjectExtractorTool/tree/2012/PhysObjectExtractor/src) are provided separately for each object.
- [AOD2NanoAODOutreachTool](https://github.com/cms-opendata-analyses/AOD2NanoAODOutreachTool/tree/2012): reads events from CMS AOD files and convert them to a reduced data format. This example provides a single [EdAnalyzer module](https://github.com/cms-opendata-analyses/AOD2NanoAODOutreachTool/blob/2012/src/AOD2NanoAOD.cc) handling all types of physics objects.

=== “Run 2 Data”

- [Physics Objects Extractor Tool (POET)](https://github.com/cms-opendata-analyses/PhysObjectExtractorTool/tree/2015MiniAOD): shows how to extract physics (objects) information and gives examples of methods or tools needed for processing them. For the sake of clarity, [EDAnalyzer modules](https://github.com/cms-opendata-analyses/PhysObjectExtractorTool/tree/2015MiniAOD/PhysObjectExtractor/src) are provided separately for each object.

DataFormats

=== “Run 1 Data”

The physical objects are usually stored in specific *collections*. For instance, [muons](http://opendata.cern.ch/docs/cms-physics-objects-2011#muons) are most commonly obtained from the `reco::Muon` collection. The [AOD Data Format Table](https://twiki.cern.ch/twiki/bin/view/CMSPublic/SWGuideAodDataTable) gives a good description of the different collections (or data formats) for the AOD tier. Unfortunately, the links for the *containers* column got broken after CMSSW was moved to Github. Those links would have pointed us to the corresponding CMSSW C++ classes associated with those containers. This is important because one needs to know which CMSSW class matches a given collection of objects to include the headers of those classes in the header of your analyzer code. But let that not let us down.

![DataFormats](../../../images/collections.png)

Fortunately, the names of the collections *containers* actually match the name of its associated CMSSW classes. These classes (data format classes) live under the [DataFormats](https://github.com/cms-sw/cmssw/tree/master/DataFormats) directory in CMSSW. If we browse through, we find the `MuonReco` package. In its `interface` area we find the [DataFormats/MuonReco/interface/Muon.h](https://github.com/cms-sw/cmssw/blob/master/DataFormats/MuonReco/interface/Muon.h) class header, which is the one we would need to incorporate in our analyzer. This is corroborated by this [Muon Analysis Twiki section](https://twiki.cern.ch/twiki/bin/view/CMSPublic/WorkBookMuonAnalysis#Available_information).

!!! Note "Remember"
 When accessing a specific piece of code in the CMSSW github repository, and want to explore its methods, variables, etc., make sure you select the right git branch. E.g., [CMSSW_5_3_X](https://github.com/cms-sw/cmssw/blob/CMSSW_5_3_X/DataFormats/MuonReco/interface/Muon.h) for 2011/2012 open data.

In addition to this base class, sometimes it is necessary to invoke other auxiliary classes. For instance, [DataFormats/MuonReco/interface/MuonFwd.h](https://github.com/cms-sw/cmssw/blob/master/DataFormats/MuonReco/interface/MuonFwd.h), which can be found in the same interface area.

So, in the context of this example, in order to support muons information, at the top of your [EDAnalyzer](../../../cmssw/cmsswanalyzers.md) you should include the following lines:

~~~ c++
//classes to extract Muon information
#include "DataFormats/MuonReco/interface/Muon.h"
#include "DataFormats/MuonReco/interface/MuonFwd.h"
~~~

See an example of an EDAnalyzer accessing muon information in the [MuonAnalyzer](https://github.com/cms-opendata-analyses/PhysObjectExtractorTool/blob/2012/PhysObjectExtractor/src/MuonAnalyzer.cc) of the Physics Object Extractor Tool (POET).

=== “Run 2 Data”

The physical objects are usually stored in specific *collections*. For instance, muons are obtained from the C++ class `std::vector<pat::Muon>` where `pat` stands for "Physics analysis tools" and is a namespace for miniAOD object classes. The collection is often called `pat::MuonCollection` using its definition in [the muon class](https://cmsdoxygen.web.cern.ch/cmsdoxygen/CMSSW_7_6_7/doc/html/dc/d3b/DataFormats_2PatCandidates_2interface_2Muon_8h_source.html)). The [MINIAOD physics objects table](https://twiki.cern.ch/twiki/bin/view/CMSPublic/WorkBookMiniAOD2015#High_level_physics_objects) gives a good description of the different collections (or data formats) for the MINIAOD tier. This is the muon entry in that table:

![DataFormats](../../../images/miniaodtable1.png)

The MINIAOD data format classes live under the [DataFormats/PatCandidates/interface](https://github.com/cms-sw/cmssw/tree/CMSSW_7_6_X/DataFormats/PatCandidates/interface) directory in CMSSW. Here we find the [DataFormats/PatCandidates/interface/Muon.h](https://github.com/cms-sw/cmssw/blob/CMSSW_7_6_X/PatCandidates/interface/Muon.h) class header, which is the one we would need to incorporate in our analyzer. The other possible collection

So, in the context of this example, in order to support muons information, at the top of your [EDAnalyzer](../../../cmssw/cmsswanalyzers.md) you should include the following line:

~~~ c++
//classes to extract Muon information
#include "DataFormats/MuonReco/interface/Muon.h"
~~~

See an example of an EDAnalyzer accessing muon information in the [MuonAnalyzer](https://github.com/cms-opendata-analyses/PhysObjectExtractorTool/blob/2015MiniAOD/PhysObjectExtractor/src/MuonAnalyzer.cc) of the Physics Object Extractor Tool (POET). The definitions of object classes used in miniAOD data format can be found in the [list of all classes](https://cmsdoxygen.web.cern.ch/cmsdoxygen/CMSSW_7_6_7/doc/html/d8/d06/namespacepat.html#nested-classes) of the `pat` namespace.

Access methods

In the Event methods for data access [https://twiki.cern.ch/twiki/bin/view/CMSPublic/SWGuideEDMGetDataFromEvent#Event_methods_for_data_access] section of the Getting Data From an Event Twiki page, one can find a complete description of the different methods available for Event data access.

!!! Note “Remember”
When accessing the CMS twiki pages we will usually point you to the most recent page. However, historical Twiki documentation, i.e., earlier revision of the pages, may provide more accurate information for open data that is already a few years old. One can access this historical archive by going to the bottom of any Twiki page, clicking on History and exploring the revisions closer to the open data release year.

=== “Run 1 Data”

As indicated in that page, all Event data access methods use the `edm::Handle<T>`, where `T` is the C++ type of the requested object, to hold the result of an access. As an example, during Run 1, the recommended method was the `getByLabel` one. This method needed an `InputTag`. This can also be extracted from the [AOD Data Format Table](https://twiki.cern.ch/twiki/bin/view/CMSPublic/SWGuideAodDataTable). The first column indicate the InputTag:

![InputTags](../../../images/inputtags.png)

Therefore, when accessing muon information, in the [`analyze` method](https://github.com/cms-opendata-analyses/PhysObjectExtractorTool/blob/2012/PhysObjectExtractor/src/MuonAnalyzer.cc#L155) of the EDAnalyzer would include the following lines:

~~~ c++
Handle<reco::MuonCollection> mymuons;
iEvent.getByLabel("muons", mymuons);
~~~

If you required *cosmic* muons, you would need instead:

~~~ c++
Handle<reco::MuonCollection> mymuons;
iEvent.getByLabel("muonsFromCosmics", mymuons);
~~~

Alternatively, as done in the POET MuonAnalyzer, it is also possible to retrieve the InputTag name from [configuration](../../../cmssw/cmsswconfigure.md). In that case, the [configuration file](https://github.com/cms-opendata-analyses/PhysObjectExtractorTool/blob/2012/PhysObjectExtractor/python/poet_cfg.py#L112) has:

~~~ python
process.demo = cms.EDAnalyzer('MuonAnalyzer',
                InputCollection = cms.InputTag("muons")
)
~~~

In this case, the appropriate input tag needs to be defined in the EDAnalyzer class as done in the [MuonAnalyzer example class](https://github.com/cms-opendata-analyses/PhysObjectExtractorTool/blob/2012/PhysObjectExtractor/src/MuonAnalyzer.cc#L53):

~~~ c++
//declare the input tag for MuonCollection
    edm::InputTag muonInput;
~~~

It is extracted from the ParameterSet in the [constructor](https://github.com/cms-opendata-analyses/PhysObjectExtractorTool/blob/2012/PhysObjectExtractor/src/MuonAnalyzer.cc#L96)

~~~ c++
MuonAnalyzer::MuonAnalyzer(const edm::ParameterSet& iConfig)
{
//now do what ever initialization is needed
muonInput = iConfig.getParameter<edm::InputTag>("InputCollection");
}
~~~

and used in the [`analyze` method](https://github.com/cms-opendata-analyses/PhysObjectExtractorTool/blob/2012/PhysObjectExtractor/src/MuonAnalyzer.cc#L160):

~~~ c++
Handle<reco::MuonCollection> mymuons;
iEvent.getByLabel(muonInput, mymuons);
~~~


=== “Run 2 Data”

As indicated in that page, all Event data access methods use the `edm::Handle<T>`, where `T` is the C++ type of the requested object, to hold the result of an access. For Run 2 data, the method is `getByToken`. This method needs a "token" and an `InputTag`, which will pass the name of the collection to the analyzed. This name is indicated as "Label" [the MINIAOD table](https://twiki.cern.ch/twiki/bin/view/CMSPublic/WorkBookMiniAOD2015#High_level_physics_objects), `slimmedMuons` for muons.

The InputTag name is defined in the [configuration](../../../cmssw/cmsswconfigure.md). In that case, the [configuration file](https://github.com/cms-opendata-analyses/PhysObjectExtractorTool/blob/2015MiniAOD/PhysObjectExtractor/python/poet_cfg.py) has:

~~~ python
process.mymuons = cms.EDAnalyzer('MuonAnalyzer', 
                muons = cms.InputTag("slimmedMuons")
)
~~~

The appropriate token in the EDAnalyzer class as done in the [MuonAnalyzer example class](https://github.com/cms-opendata-analyses/PhysObjectExtractorTool/blob/2015MiniAOD/PhysObjectExtractor/src/MuonAnalyzer.cc):

~~~ c++
//declare the token for MuonCollection
  edm::EDGetTokenT<pat::MuonCollection> muonToken_;
~~~

which is then passed with the Input Tag to the constructor of the EDAnalyzer class

~~~ c++
MuonAnalyzer::MuonAnalyzer(const edm::ParameterSet& iConfig): 
    muonToken_(consumes<pat::MuonCollection>(iConfig.getParameter<edm::InputTag>("muons")))
{
//now do what ever initialization is needed
~~~

and used in the `analyze` method:

~~~ c++
Handle<pat::MuonCollection> muons;
iEvent.getByToken(muonToken_, muons);
~~~


Detector information for identification

The most signicant difference between a list of certain particles from a Monte Carlo generator and a list of the corresponding physics objects from CMS is likely the inherent uncertainty in the reconstruction. Selection of “a muon” or “an electron” for analysis requires algorithms designed to separate “real” objects from “fakes”. These are called identification algorithms, often abbreviated as ID.

Isolation algorithms are designed to measure the amount of energy deposited near the object, to determine if it was likely produced near the primary interaction (typically little nearby energy), or from the decay of a longer-lived particle (typically a lot of nearby energy). Many types of isolation algorithms exist to deal with unique physics cases.

Isolation is computed in similar ways for all physics objects: search for particles in a cone around the object of interest and sum up their energies, subtracting off the energy deposited by pileup particles. This sum divided by the object of interest’s transverse momentum is called relative isolation and is the most common way to determine whether an object was produced “promptly” in or following the proton-proton collision (ex: electrons from a Z boson decay, or photons from a Higgs boson decay). Relative isolation values will tend to be large for particles that emerged from weak decays of hadrons within jets, or other similar “nonprompt” processes.

Both types of algorithms function using working points that are described on a spectrum from “loose” to “tight”. Working points that are “looser” tend to have a high efficiency for accepting real objects, but perhaps a poor rejection rate for fake objects. Working points that are “tighter” tend to have lower efficiencies for accepting real objects, but much better rejection rates for fake objects. The choice of working point is highly analysis dependent. Some analyses value efficiency over background rejection, and some analyses are the opposite.

The standard identification and isolation algorithm results can be accessed from the physics object classes.

Additional information

The next pages in this guide provide further details on how to access and identify CMS physics objects.

In addition, in Chapter 7 of the CMS Workbook [https://twiki.cern.ch/twiki/bin/view/CMSPublic/WorkBookIntroHiLevelReco] one can find Analysis pages that provide additional information, which can be useful to check on top of the general strategy for accessing objects that was discussed above.

Photons

Introduction

Photons are measured in the CMS experiment in the electromagnetic calorimeter [https://cms.cern/detector/measuring-energy/energy-electrons-and-photons-ecal] and, in case they convert to electron-positron pairs, also in the inner tracker [https://cms.cern/index.php/detector/identifying-tracks] as summarized on introductory page on Finding electrons and photons [https://cms.cern/news/finding-electrons-and-photons-cms-detector]. The signals from these systems are processed with CMSSW through subsequent steps to form photon candidates which are then available in the photon collection of the data files.

Photon 4-vector information

=== “Run 1 Data”

An example of an EDAnalyzer accessing photon information is available in the [PhotonAnalyzer](https://github.com/cms-opendata-analyses/PhysObjectExtractorTool/blob/2012/PhysObjectExtractor/src/PhotonAnalyzer.cc) of the Physics Object Extractor Tool (POET). The following header files needed for accessing electron information are included:

``` cpp
//classes to extract Photon information
#include "DataFormats/EgammaCandidates/interface/Photon.h"
#include "DataFormats/EgammaCandidates/interface/PhotonFwd.h"
#include "DataFormats/GsfTrackReco/interface/GsfTrack.h"
#include "DataFormats/EgammaCandidates/interface/GsfElectron.h"
#include "RecoEgamma/EgammaTools/interface/ConversionTools.h"
#include "EgammaAnalysis/ElectronTools/interface/PFIsolationEstimator.h"
```

In [PhotonAnalyzer.cc](https://github.com/cms-opendata-analyses/PhysObjectExtractorTool/blob/2012/PhysObjectExtractor/src/PhotonAnalyzer.cc), the photon four-vector elements are accessed as shown below.

``` cpp
Handle<reco::PhotonCollection> myphotons;
iEvent.getByLabel(photonInput, myphotons);

[...]

for (reco::PhotonCollection::const_iterator itphoton=myphotons->begin(); itphoton!=myphotons->end(); ++itphoton){

  [...]

  photon_e.push_back(itphoton->energy());
  photon_pt.push_back(itphoton->pt());
  photon_px.push_back(itphoton->px());
  photon_py.push_back(itphoton->py());
  photon_pz.push_back(itphoton->pz());
  photon_eta.push_back(itphoton->eta());
  photon_phi.push_back(itphoton->phi());

  [...]
}
```


=== “Run 2 Data”

An example of an EDAnalyzer accessing electron information is available in the [PhotonAnalyzer](https://github.com/cms-opendata-analyses/PhysObjectExtractorTool/blob/2015MiniAOD/PhysObjectExtractor/src/PhotonAnalyzer.cc) of the Physics Object Extractor Tool (POET). The following header file needed for accessing photon information is included:

``` cpp
//class to extract photon information
#include "DataFormats/PatCandidates/interface/Photon.h"
```

In [PhotonAnalyzer.cc](https://github.com/cms-opendata-analyses/PhysObjectExtractorTool/blob/2015MiniAOD/PhysObjectExtractor/src/PhotonAnalyzer.cc), the electron four-vector elements are accessed from the `pat::photon` collection as shown below.

``` cpp
Handle<pat::PhotonCollection> photons;
iEvent.getByToken(photonToken_, photons);

[...]

for (const pat::Photon &pho : *photons)
{
  photon_e.push_back(pho.energy());
  photon_pt.push_back(pho.pt());
  photon_px.push_back(pho.px());
  photon_py.push_back(pho.py());
  photon_pz.push_back(pho.pz());
  photon_eta.push_back(pho.eta());
  photon_phi.push_back(pho.phi());

  [...]
}
```

with `photonToken_` defined as a member of the `PhotonAnalyzer` class and its value read from the [configuration file](https://github.com/cms-opendata-analyses/PhysObjectExtractorTool/blob/2015MiniAOD/PhysObjectExtractor/python/poet_cfg.py).

Photon identification

As explained in the Physics Object page, a mandatory task in the physics analysis is to identify photons, i.e. to separate “real” objects from “fakes”. A large fraction of the energy deposited in the detector by all proton-proton interactions arises from photons originating in the decay of neutral mesons, and these electromagnetic showers provide a substantial background to signal photons. The identification criteria depend on the type of analysis.

=== “Run 1 Data”

The standard identification and isolation algorithm results can be accessed from the [photon object class](https://cmsdoxygen.web.cern.ch/cmsdoxygen/CMSSW_5_3_30/doc/html/d5/d35/classreco_1_1Photon.html) and the recommended working points for 2012 are implemented in the example code [PhotonAnalyzer.cc](https://github.com/cms-opendata-analyses/PhysObjectExtractorTool/blob/2012/PhysObjectExtractor/src/PhotonAnalyzer.cc).

Three levels of identification criteria are defined

``` cpp
bool isLoose = false, isMedium = false, isTight = false;
```

For photons in the electromagnetic calorimeter barrel area, they are determined as follows:

``` cpp
if ( itphoton->eta() <= 1.479 ){
  if ( ph_hOverEm<.05 && ph_sigIetaIeta<.012 && 
      corrPFCHIso<2.6 && corrPFNHIso<(3.5+.04*itphoton->pt()) && 
      corrPFPhIso<(1.3+.005*itphoton->pt()) && passelectronveto==true) {
    isLoose = true;

    if ( ph_sigIetaIeta<.011 && corrPFCHIso<1.5 
        && corrPFNHIso<(1.0+.04*itphoton->pt()) 
        && corrPFPhIso<(.7+.005*itphoton->pt())){
      isMedium = true;

      if ( corrPFCHIso<.7 && corrPFNHIso<(.4+.04*itphoton->pt()) 
          && corrPFPhIso<(.5+0.005*itphoton->pt()) ){
        isTight = true;
      }
    }
  }
}
```

where

- `ph_sigIetaIeta` describes the variance of the ECAL cluster in psuedorapidity ("ieta" is an integer index for this angle).
- `ph_hOverEm` describes the ratio of HCAL to ECAL energy deposits, which should be small for good quality photons.
- The electron veto `passelectronveto` is obtained from an algorithm that indicates if photons have been identified also as electrons.
- `corr...Iso` variables represent different isolation properties of the photon.

The isolation variables are defined with the `PFIsolationEstimator` class in the default cone size of 0.3 with

``` cpp
PFIsolationEstimator isolator;
isolator.initializePhotonIsolation(kTRUE);
isolator. setConeSize(0.3);
const reco::VertexRef vertex(vertices, 0);
const reco::Photon &thephoton = *itphoton;
isolator.fGetIsolation(&thephoton, pfCands.product(), vertex, vertices);
double corrPFCHIso = 
  std::max(isolator.getIsolationCharged() - rhoIso * aEff.CH_AEff, 0.)/itphoton->pt();
double corrPFNHIso = 
  std::max(isolator.getIsolationNeutral() - rhoIso * aEff.NH_AEff, 0.)/itphoton->pt();
double corrPFPhIso = 
  std::max(isolator.getIsolationPhoton() - rhoIso * aEff.Ph_AEff, 0.)/itphoton->pt();
```

In the endcap part of the electromagnetic calorimeter, the procedure is similar with different values.

!!! Note "To do"
 - The isolation snippet needs more explanation

=== “Run 2 Data”

The standard identification and isolation algorithm results can be accessed from the [pat photon object class](https://cmsdoxygen.web.cern.ch/cmsdoxygen/CMSSW_7_6_7/doc/html/d4/d47/classpat_1_1Photon.html). Three levels of identification criteria are defined: loose, medium, and tight. An example selection is implemented in [PhotonAnalyzer.cc](https://github.com/cms-opendata-analyses/PhysObjectExtractorTool/blob/2015MiniAOD/PhysObjectExtractor/src/PhotonAnalyzer.cc):

``` cpp
  photon_isLoose.push_back(pho.photonID("cutBasedPhotonID-PHYS14-PU20bx25-V2p1-standalone-loose"));
  photon_isMedium.push_back(pho.photonID("cutBasedPhotonID-PHYS14-PU20bx25-V2p1-standalone-medium"));
  photon_isTight.push_back(pho.photonID("cutBasedPhotonID-PHYS14-PU20bx25-V2p1-standalone-tight"));
```

!!! Warning
 The choice of recommended photon ID criteria for 2015 data needs to be verified. In addition to `PHYS14_PU20bx25_V2` other sets, for example `Spring15_25ns_V1`, are available.

Several isolation methods are available through the class member methods, for example:

``` cpp
  photon_chIso.push_back(pho.chargedHadronIso());
  photon_nhIso.push_back(pho.neutralHadronIso());
  photon_phIso.push_back(pho.photonIso());
```

!!! Note "To do"
 - Verify the recommended isolation, many other are available in the [photon class](https://github.com/cms-sw/cmssw/blob/CMSSW_7_6_X/DataFormats/PatCandidates/interface/Photon.h)

!!! Note “To do”
Add a mention on photon conversions both for Run 1 and Run 2

Taus

Introduction

Tau lepton having a mass of 1.777 GeV, is the only lepton heavy enough to decay into hadrons. As depicted in the pi-chart, in about one third of the cases τ’s decay leptonically to a muon (τμ) or an electron (τe) with two neutrinos, and are reconstructed and identified with the usual techniques for muons and electrons. In the remaining cases, τ leptons decay hadronically, to a combination of charged and neutral mesons with a τν.

[image: ../../../_images/TauDecayPiChart.png]TauDecays

Hadronically decaying τ’s, denoted by τh, are reconstructed and identified with the hadrons-plus-strips (HPS) algorithm, which was developed for use in the LHC Run-1. The key challenge that this algorithm has to face is the distinction between genuine τh, and quark and gluon jets, which are copiously produced in QCD multijet process and can be misidentified as τh. The main handle for reducing these jet→τh misidentification backgrounds is to utilize the fact that the particles produced in τh decays are of lower multiplicity, deposit energy in a narrow region compared to a quark or gluon jet, and are typically isolated with respect to other particles in the event.

In some physics analyses, the misidentification of electrons or muons as τh candidates may constitute a sizeable background as well. Therefore, HPS algorithm has got various discriminators like isolation, against electrons and muons etc. to identify genuine hadronically decaying taus.

Tau 4-vector information

=== “Run 1 Data”

An example of an EDAnalyzer tau information is available in the [TauAnalyzer](https://github.com/cms-opendata-analyses/PhysObjectExtractorTool/blob/2012/PhysObjectExtractor/src/TauAnalyzer.cc) of the Physics Object Extractor Tool (POET). The following header files needed for accessing tau information are included:

``` cpp
//classes to extract tau information
#include "DataFormats/TauReco/interface/PFTau.h"
#include "DataFormats/TauReco/interface/PFTauFwd.h"
#include "DataFormats/TauReco/interface/PFTauDiscriminator.h"
```

In [TauAnalyzer.cc](https://github.com/cms-opendata-analyses/PhysObjectExtractorTool/blob/2012/PhysObjectExtractor/src/TauAnalyzer.cc), the tau four-vector elements are accessed as shown below.

``` cpp
Handle<reco::PFTauCollection> mytaus;
iEvent.getByLabel(tauInput, mytaus);

[...]

for (reco::PFTauCollection::const_iterator itTau=mytaus->begin(); itTau!=mytaus->end(); ++itTau){
    if (itTau->pt() > tau_min_pt) {
        tau_e.push_back(itTau->energy());
        tau_pt.push_back(itTau->pt());
        tau_px.push_back(itTau->px());
        tau_py.push_back(itTau->py());
        tau_pz.push_back(itTau->pz());
        tau_eta.push_back(itTau->eta());
        tau_phi.push_back(itTau->phi());

[...]
}
```


=== “Run 2 Data”

An example of an EDAnalyzer tau information is available in the [TauAnalyzer](https://github.com/cms-opendata-analyses/PhysObjectExtractorTool/blob/2015MiniAOD/PhysObjectExtractor/src/TauAnalyzer.cc) of the Physics Object Extractor Tool (POET). The following header file needed for accessing tau information is included:

``` cpp
//class to extract tau information
#include "DataFormats/PatCandidates/interface/Tau.h"
```

In [TauAnalyzer.cc](https://github.com/cms-opendata-analyses/PhysObjectExtractorTool/blob/2015MiniAOD/PhysObjectExtractor/src/TauAnalyzer.cc), the tau four-vector elements are accessed from the `pat::tau` collection as shown below.

``` cpp
Handle<pat::TauCollection> taus;
iEvent.getByToken(tauToken_, taus);
[...]

for (const pat::Tau &tau : *taus)
{
    tau_e.push_back(tau.energy());
    tau_pt.push_back(tau.pt());
    tau_px.push_back(tau.px());
    tau_py.push_back(tau.py());
    tau_pz.push_back(tau.pz());
    tau_eta.push_back(tau.eta());
    tau_phi.push_back(tau.phi());

[...]
}
```

with `tauToken_` defined as a member of the `TauAnalyzer` class and its value read from the [configuration file](https://github.com/cms-opendata-analyses/PhysObjectExtractorTool/blob/2015MiniAOD/PhysObjectExtractor/python/poet_cfg.py).

Tau identification

=== “Run 1 Data”

The identification of taus relies almost entirely on pre-computed algorithms to determine the quality of the tau reconstruction and the decay type. Since this object is not stable and has several decay modes, different combinations of identification and isolation algorithms are used across different analyses. The [Tau tagging CMS WorkBook page](https://twiki.cern.ch/twiki/bin/view/CMSPublic/WorkBookPFTauTagging#Legacy_Tau_ID_Run_I) provides a large table of available algorithms.

In contrast to the muon object, tau algorithm results are typically saved in the AOD files as their own PFTauDisciminator collections, rather than as part of the tau object class. As shown in [TauAnalyzer.cc](https://github.com/cms-opendata-analyses/PhysObjectExtractorTool/blob/2012/PhysObjectExtractor/src/TauAnalyzer.cc), these collections can be accessed with the following impressively long label names:

```cpp
Handle<reco::PFTauDiscriminator> tausLooseIso, tausVLooseIso, tausMediumIso, tausTightIso, 
tausTightEleRej, tausTightMuonRej, tausDecayMode, tausRawIso;

iEvent.getByLabel(InputTag("hpsPFTauDiscriminationByDecayModeFinding"),tausDecayMode);
iEvent.getByLabel(InputTag("hpsPFTauDiscriminationByRawCombinedIsolationDBSumPtCorr"), tausRawIso);
iEvent.getByLabel(InputTag("hpsPFTauDiscriminationByVLooseCombinedIsolationDBSumPtCorr"), tausVLooseIso);
iEvent.getByLabel(InputTag("hpsPFTauDiscriminationByLooseCombinedIsolationDBSumPtCorr"), tausLooseIso);
iEvent.getByLabel(InputTag("hpsPFTauDiscriminationByMediumCombinedIsolationDBSumPtCorr"), tausMediumIso);
iEvent.getByLabel(InputTag("hpsPFTauDiscriminationByTightCombinedIsolationDBSumPtCorr"), tausTightIso);
iEvent.getByLabel(InputTag("hpsPFTauDiscriminationByTightElectronRejection"), tausTightEleRej);
iEvent.getByLabel(InputTag("hpsPFTauDiscriminationByTightMuonRejection"), tausTightMuonRej);
```

The tau discriminator collections act as pairs, containing the index of the tau and the value of the discriminant for that tau. Note that the arrays are filled by calls to the individual discriminant objects, but referencing the vector index of the tau in the main tau collection.

``` cpp
const auto idx = itTau - mytaus->begin();
tau_iddecaymode.push_back(tausDecayMode->operator[](idx).second);
tau_idisoraw.push_back(tausRawIso->operator[](idx).second);
tau_idisovloose.push_back(tausVLooseIso->operator[](idx).second);
tau_idisoloose.push_back(tausLooseIso->operator[](idx).second);
tau_idisomedium.push_back(tausMediumIso->operator[](idx).second);
tau_idisotight.push_back(tausTightIso->operator[](idx).second);
tau_idantieletight.push_back(tausTightEleRej->operator[](idx).second);
tau_idantimutight.push_back(tausTightMuonRej->operator[](idx).second);
```

The recommendations for applying these discriminators are summarizes in the [Tau identification nutshell recipe](https://twiki.cern.ch/twiki/bin/view/CMSPublic/NutShellRecipeFor5312AndNewer).

=== “Run 2 Data”

!!! Note "To do"
 - to complete once POET 2015MiniAOD branch TauAnalyzer has been validated

Common tools for physics objects

Many of the most important kinematic quantities defining a physics object are accessed in a common way across all the objects. All objects have associated energy-momentum vectors, typically constructed using transverse momentum, pseudorapdity, azimuthal angle, and mass or energy.

4-vector access functions

=== “Run 1 Data”

In [MuonAnalyzer.cc](https://github.com/cms-opendata-analyses/PhysObjectExtractorTool/blob/2012/PhysObjectExtractor/src/MuonAnalyzer.cc), the muon four-vector elements are accessed as shown below. In this example, the values for each muon are stored into an array, which will become a branch in a ROOT TTree.

```cpp
Handle<reco::MuonCollection> mymuons;
iEvent.getByLabel(muonInput, mymuons);

[...]

for (reco::MuonCollection::const_iterator itmuon=mymuons->begin(); itmuon!=mymuons->end(); ++itmuon){
  if (itmuon->pt() > mu_min_pt) {

    muon_e.push_back(itmuon->energy());
    muon_pt.push_back(itmuon->pt());
    muon_eta.push_back(itmuon->eta());
    muon_phi.push_back(itmuon->phi());

    muon_px.push_back(itmuon->px());
    muon_py.push_back(itmuon->py());
    muon_pz.push_back(itmuon->pz());

    muon_mass.push_back(itmuon->mass());

}
```

The same type of kinematic member functions are used in all the different analyzers in the [src/ directory of the POET example code](https://github.com/cms-opendata-analyses/PhysObjectExtractorTool/tree/2012/PhysObjectExtractor/src). These and other basic kinematic methods are defined in the [LeafCandidate class](https://github.com/cms-sw/cmssw/blob/CMSSW_5_3_X/DataFormats/Candidate/interface/LeafCandidate.h) of the CMSSW DataFormats package (rendered for maybe easier readability in the [CMSSW software documentation](https://cmsdoxygen.web.cern.ch/cmsdoxygen/CMSSW_5_3_30/doc/html/dc/d78/classreco_1_1LeafCandidate.html)).

=== “Run 2 Data”

In [MuonAnalyzer.cc](https://github.com/cms-opendata-analyses/PhysObjectExtractorTool/blob/2015MiniAOD/PhysObjectExtractor/src/MuonAnalyzer.cc), the muon four-vector elements are accessed as shown below. In this example, the values for each muon are stored into an array, which will become a branch in a ROOT TTree.

```cpp
Handle<pat::MuonCollection> muons;
iEvent.getByToken(muonToken_, muons);

[...]

for (const pat::Muon &mu : *muons)
{
  muon_e.push_back(mu.energy());
  muon_pt.push_back(mu.pt());
  muon_px.push_back(mu.px());
  muon_py.push_back(mu.py());
  muon_pz.push_back(mu.pz());
  muon_eta.push_back(mu.eta());
  muon_phi.push_back(mu.phi());

  [...]

}
```

The same type of kinematic member functions are used in all the different analyzers in the [src/ directory of the POET example code](https://github.com/cms-opendata-analyses/PhysObjectExtractorTool/tree/2015MiniAOD/PhysObjectExtractor/src). These and other basic kinematic methods are defined in the [LeafCandidate class](https://github.com/cms-sw/cmssw/blob/CMSSW_7_6_7/DataFormats/Candidate/interface/LeafCandidate.h) of the CMSSW DataFormats package (rendered for maybe easier readability in the [CMSSW software documentation](https://cmsdoxygen.web.cern.ch/cmsdoxygen/CMSSW_7_6_7/doc/html/dc/d78/classreco_1_1LeafCandidate.html)).

Track access functions

Many objects are also connected to tracks from the CMS tracking detectors. Information from
tracks provides other kinematic quantities that are common to multiple types of objects.

=== “Run 1 Data”

From a muon object, we can access the associated track while looping over muons via the `globalTrack` method:

```cpp
auto trk = mu->globalTrack(); // muon track
```

Often, the most pertinent information about an object (such as a muon) to access from its
associated track is its **impact parameter** with respect to the primary interaction vertex.
Since muons can also be tracked through the muon detectors, we first check if the track is
well-defined, and then access impact parameters in the xy-plane (`dxy` or `d0`) and along
the beam axis (`dz`), as well as their respective uncertainties. They can be accessed as shown
in this code snippet from [MuonAnalyzer](https://github.com/cms-opendata-analyses/PhysObjectExtractorTool/blob/2012/PhysObjectExtractor/src/MuonAnalyzer.cc):

``` cpp
    auto trk = itmuon->globalTrack();
    if (trk.isNonnull()) {
      muon_dxy.push_back(trk->dxy(pv));
      muon_dz.push_back(trk->dz(pv));
      muon_dxyErr.push_back(trk->d0Error());
      muon_dzErr.push_back(trk->dzError());
    }
```

These functions need the position of the interaction vertex (`pv`) as an input and this is provided through the first elemement of the vertex collection `vertices` which gives the best estimate of the interaction point. The vertex collection is accessed with:

``` cpp
  Handle<reco::VertexCollection> vertices;
  iEvent.getByLabel(InputTag("offlinePrimaryVertices"), vertices);

  [...]

  math::XYZPoint pv(vertices->begin()->position());
```

Note that the tracking method depends on the object, the electron tracks are found using the Gaussian-sum filter method `gsfTrack`:

``` cpp
auto trk = it->gsfTrack(); // electron track
```


=== “Run 2 Data”

From a muon object, we can access the associated track while looping over muons via the `muonBestTrack` method.

Often, the most pertinent information about an object (such as a muon) to access from its
associated track is its **impact parameter** with respect to the primary interaction vertex.
Since muons can also be tracked through the muon detectors, we first check if the track is
well-defined, and then access impact parameters in the xy-plane (`dxy` or `d0`) and along
the beam axis (`dz`), as well as their respective uncertainties. They can be accessed as shown
in this code snippet from [MuonAnalyzer](https://github.com/cms-opendata-analyses/PhysObjectExtractorTool/blob/2015MiniAOD/PhysObjectExtractor/src/MuonAnalyzer.cc):

``` cpp
  muon_dxy.push_back(mu.muonBestTrack()->dxy(PV.position()));
  muon_dz.push_back(mu.muonBestTrack()->dz(PV.position()));
  muon_dxyError.push_back(mu.muonBestTrack()->d0Error());
  muon_dzError.push_back(mu.muonBestTrack()->dzError());
```

These functions need the position of the interaction vertex (`PV`) as an input and this is provided through the first elemement of the vertex collection `vertices` which gives the best estimate of the interaction point. The vertex collection is accessed with:

``` cpp
  Handle<reco::VertexCollection> vertices;
  iEvent.getByToken(vtxToken_, vertices);
  const reco::Vertex &PV = vertices->front();
```

Note that the tracking method depends on the object, the electron tracks are found using the Gaussian-sum filter method `gsfTrack`.

Matching to generated particles

Simulated files also contain information about the generator-level particles that
were propagated into the showering and detector simulations. Physics objects can
be matched to these generated particles spatially.

=== “Run 1 Data”

The [AOD2NanoAOD tool](https://github.com/cms-opendata-analyses/AOD2NanoAODOutreachTool/tree/2012) is an example code extracting objects from AOD file and storing them in an output file. In its [analyzer code](https://github.com/cms-opendata-analyses/AOD2NanoAODOutreachTool/blob/2012/src/AOD2NanoAOD.cc), it sets up several utility functions for matching: `findBestMatch`,
`findBestVisibleMatch`, and `subtractInvisible`. The `findBestMatch` function takes
generated particles (with an automated type `T`) and the 4-vector of a physics
object. It uses angular separation to find the closest generated particle to the
reconstructed particle:

``` cpp
template <typename T>
int findBestMatch(T& gens, reco::Candidate::LorentzVector& p4) {

  # initial definition of "closest" is really bad
  float minDeltaR = 999.0;
  int idx = -1;

  # loop over the generated particles
  for (auto g = gens.begin(); g != gens.end(); g++) {
    const auto tmp = deltaR(g->p4(), p4);

    # if it is closer, overwrite the definition of closest
    if (tmp < minDeltaR) {
      minDeltaR = tmp;
      idx = g - gens.begin();
    }
  }
  return idx; # return the index of the match
}
```

The other utility functions are similar, but correct for generated particles that
decay to neutrinos, which would affect the "visible" 4-vector.

In the AOD2NanoAOD tool, muons are matched only to "interesting" generated particles, which
are all the leptons and photons (PDG ID 11, 13, 15, 22). Their generator status must be 1,
indicating a final-state particle after any radiation chain.

``` cpp
if (!isData){
  value_gen_n = 0;
  
  for (auto p = selectedMuons.begin(); p != selectedMuons.end(); p++) {

      // get the muon's 4-vector
      auto p4 = p->p4();

      // perform the matching with a utility function
      auto idx = findBestVisibleMatch(interestingGenParticles, p4);

      // if a match was found, save the generated particle's information
      if (idx != -1) {
        auto g = interestingGenParticles.begin() + idx;

  // another example of common 4-vector access functions!
        value_gen_pt[value_gen_n] = g->pt();
        value_gen_eta[value_gen_n] = g->eta();
        value_gen_phi[value_gen_n] = g->phi();
        value_gen_mass[value_gen_n] = g->mass();

  // gen particles also have ID and status from the generator
        value_gen_pdgid[value_gen_n] = g->pdgId();
        value_gen_status[value_gen_n] = g->status();

  // save the index of the matched gen particle
        value_mu_genpartidx[p - selectedMuons.begin()] = value_gen_n;
        value_gen_n++;
      }
  }
}
```


=== “Run 2 Data”

!!! Note "To do"
 This will refer to Run 2 MiniAOD branch of AOD2NanoAODOutreachTool once available

Luminosity Uncertainty

!!! Warning
This page is under construction

MC Uncertainty

!!! Warning
This page is under construction

Object Uncertainty

!!! Warning
This page is under construction

Pileup Uncertainty

!!! Warning
This page is under construction

B Tag Uncertainty

Scale Factors

In simulation,

	Efficiency for tagging b quarks as b jets: the number of “real b jets” (jets spatially matched to generator-level b hadrons) tagged as b jets divided by the number of real b jets.

	Efficiency for mis-tagging c or light quarks as b jets: real c/light jets tagged as b jets divided by real c/light jets.

These values are typically computed as functions of the momentum or pseudorapidity of the jet. The “real” flavor of the jet is accessed most simply by creating pat::Jet objects instead of reco::Jet objects.

Scale factors to increase or decrease the number of b-tagged jets in simulation can be applied in a number of ways, but typically involve weighting simulation events based on the efficiencies and scale factors relevant to each jet in the event. Scale factors for the CSV algorithm are available for Open Data and involve extracting functions from a comma-separated-values file. The main documentation for b tagging and scale factors can be found in the b tagging recommendation twiki [https://twiki.cern.ch/twiki/bin/view/CMSPublic/BtagRecommendation2011OpenData].

Applying Scale Factors

Calculating Efficiencies

The BTagging folder [https://github.com/cms-legacydata-analyses/PhysObjectExtractorTool/tree/master/BTagging] of PhysObjectExtractorTool (POET [https://github.com/cms-legacydata-analyses/PhysObjectExtractorTool]) is used for calculating the efficiency for tagging each flavor of jet as a b quark, as a function of the jet momentum with the file WeightAnalyzer.cc [https://github.com/cms-legacydata-analyses/PhysObjectExtractorTool/blob/master/BTagging/src/WeightAnalyzerBEff.cc]. The purpose of this file is to set up jet momentum histograms for numerators and denominators of efficiency histograms as defined above. The code loops through the jets, checks their flavor, checks their btagging discriminator to see if it passes tight, medium and or loose cut, and then fills the histograms according to that information.

 double disc = it->bDiscriminator(discriminatorStr);
 int hadronFlavor = it->partonFlavour();

 if(abs(hadronFlavor)==5){
 BEff_Dptbins_b->Fill(pt,weight);
 if(disc >= discriminatorValueT) BEffTight_Nptbins_b->Fill(pt,weight);
 if(disc >= discriminatorValueM) BEffMed_Nptbins_b->Fill(pt,weight);
 if(disc >= discriminatorValueL) BEffLoose_Nptbins_b->Fill(pt,weight);
 } else if(abs(hadronFlavor)==4){
 ...

These historgrams are then stored in an output file.

Input, output, and other parameters can be changed in the config file [https://github.com/cms-legacydata-analyses/PhysObjectExtractorTool/blob/master/BTagging/python/befficiency_patjets_cfg.py].

After this, you can save, exit, and compile, and then move onto the config file [https://github.com/cms-legacydata-analyses/PhysObjectExtractorTool/blob/master/BTagging/python/befficiency_patjets_cfg.py]. You will put the file(s) which you wish to run efficiencies on here:

------- This is a test file
process.source = cms.Source("PoolSource",
 fileNames = cms.untracked.vstring(
 'root://eospublic.cern.ch//eos/opendata/cms/MonteCarlo2012/Summer12_DR53X/TTbar_8TeV-Madspin_aMCatNLO-herwig/AODSIM/PU_S10_START53_V19-v2/00000/04FCA1D5-E74C-E311-92CE-002590A887F0.root'))

Once this is complete, you can run the config file [https://github.com/cms-legacydata-analyses/PhysObjectExtractorTool/blob/master/BTagging/python/befficiency_patjets_cfg.py] for your efficiencies.

Run Complete

Once your run is complete, in the ‘BTagging’ folder there should be a file called plotBeff.C [https://github.com/cms-legacydata-analyses/PhysObjectExtractorTool/blob/master/BTagging/plotBeff.C]. This file is set up to do the numerator and denomenator divisions (as defined earlier), show you a histogram of your efficiencies from those calculations, and write the same efficiencies that you calculated in a numerical form. To run this code open this file in root like such:

root plotBeff.c

The histogram and output should appear through root. An example of what the histogram should look like is this:

[image: ../../../_images/c1.png]Output Histogram

If Needed: Updating Momentum Bin Code

 In WeightAnalyzer.cc [https://github.com/cms-legacydata-analyses/PhysObjectExtractorTool/blob/master/BTagging/src/WeightAnalyzerBEff.cc], there is a spot to input custom jet momentum bins that looks like this:

double ptbinsB[10] = {0, 15, 30, 50, 70, 100, 150, 200, 500, 1000};

 where a bin’s momentums span from 0 to 15, 15 to 30, etc.

 After your jet momentum bin update, you need to update the actual code that produces the histogram. Continuing this example, there are a total of 9 momentum bins from the numbers given in, ptbinsB. In the histogram producing code, there is a 9 indicating the number of bins:

 BEff_Dptbins_b = fs->make<TH1D>("BEff_Dptbins_b ","",9,ptbinsB); BEff_Dptbins_b->Sumw2();

 Where the number 9 is now, this number will need to be updated to your number of bins.

Access Efficiencies

Once you have your efficiencies, you can then put them in to the 3 look up functions [https://github.com/cms-legacydata-analyses/PhysObjectExtractorTool/blob/master/PhysObjectExtractor/src/PatJetAnalyzer.cc#L199-L242] that have been implemented in PatJetAnalyzer for storing efficiencies. Here, for example, is the b tag efficiencies function which returns efficiency given a jet momentum:

double
PatJetAnalyzer::getBtagEfficiency(double pt){
 if(pt < 25) return 0.263407;
 else if(pt < 50) return 0.548796;
 else if(pt < 75) return 0.656801;
 else if(pt < 100) return 0.689167;
 else if(pt < 125) return 0.697911;
 else if(pt < 150) return 0.700187;
 else if(pt < 200) return 0.679236;
 else if(pt < 400) return 0.625296;
 else return 0.394916;
}

Access Scale Factors

The data file [https://twiki.cern.ch/twiki/pub/CMSPublic/BtagRecommendation2011OpenData/CSV.csv] provided by the CMS b tagging group contains the scale factor functions for all types of jets. Some important titles to give more context to are as follows:

	OperatingPoint - This is the light (0), medium (1), or tight (2) cut of the flavored jet.

	formula - This is the equation for calculating the scale factor, where x is the momentum of the jet.

	jetFlavor - b = 0, c = 1, udsg = 2.

Sorting Columns and creating filters with the .csv file can make accessing and finding sepcific scale factor equations easier. For example, filtering the OperatingPoint column to only show the number 1 will give you only medium cut jet information. Other useful information about the .csv file can be found here [https://twiki.cern.ch/twiki/bin/view/CMSPublic/BTagCalibration].

The scale factor equations from the folumla column have been implemented in POET! In PatJetAnalyzer there are 2 functions, one for b and c flavored jets and one for light flavored jets, that return the scale factor of the jet depending on the momentum of the jet. Below is the b and c tag function.

double
PatJetAnalyzer::getBorCtagSF(double pt, double eta){
 if (pt > 670.) pt = 670;
 if(fabs(eta) > 2.4 or pt<20.) return 1.0;

 return 0.92955*((1.+(0.0589629*pt))/(1.+(0.0568063*pt)));
}

Look at this twiki for additional information about scale factors [https://twiki.cern.ch/twiki/bin/view/CMSPublic/BtagRecommendation2011OpenData#Data_MC_Scale_Factors].

Calculating Weights

Once these functions are updated to their desired states, weight calculating can happen! The first thing to check for when event weight calculating is this:
if (jet_btag.at(value_jet_n) > 0.679). This check is to see whether or not the jet distminator makes the cut we want our jets to make. In this case, we want our jets to make the medium cut (.679). If a jet makes the cut, there are then a couple more checks to be made:

 if(abs(hadronFlavour) == 5){
 eff = getBtagEfficiency(corrpt);
 SF = getBorCtagSF(corrpt, jet_eta.at(value_jet_n));
 SFu = SF + uncertaintyForBTagSF(corrpt, jet_eta.at(value_jet_n));
 SFd = SF - uncertaintyForBTagSF(corrpt, jet_eta.at(value_jet_n));
 } else if(abs(hadronFlavour) == 4){
 eff = getCtagEfficiency(corrpt);
 SF = getBorCtagSF(corrpt, jet_eta.at(value_jet_n));
 SFu = SF + (2 * uncertaintyForBTagSF(corrpt, jet_eta.at(value_jet_n)));
 SFd = SF - (2 * uncertaintyForBTagSF(corrpt, jet_eta.at(value_jet_n)));
 } else {
 eff = getLFtagEfficiency(corrpt);
 SF = getLFtagSF(corrpt, jet_eta.at(value_jet_n));
 SFu = SF + (uncertaintyForLFTagSF(corrpt, jet_eta.at(value_jet_n)));
 SFd = SF - (uncertaintyForLFTagSF(corrpt, jet_eta.at(value_jet_n)));
 }

This section first finds which flavor of jet it is (b = 5, c = 4, and light = anything else) and then gets the efficiency for the respected jet, as well as calculates its scale factor. It also calculates its up and down quarked scale factors of the jet. Once these checks and calculations are complete, the following calulations can occur:

 MC *= eff;
 btagWeight *= SF * eff;
 btagWeightUp *= SFu * eff;
 btagWeightDn *= SFd * eff;

These calculations are the probability of a given configuration of jets in MC simulation (MC) and data (btagWeight, btagWeightUp, and btagWeightDn).
The same process with a little bit different probability calculating is done if the jet did not meet the desired cut.

Once these checks have finished for every jet you are looking at, a final calculation for the event weights is done.

btagWeight = (btagWeight/MC);
btagWeightUp = (btagWeightUp/MC);
btagWeightDn = (btagWeightDn/MC);

NOTE: There are many ways to go about calculating event weights. This link [https://twiki.cern.ch/twiki/bin/view/CMSPublic/BtagRecommendation2011OpenData#Methods_to_Apply_b_Tagging_Effic] shows a couple of the different ways. In POET, method 1a is the method used.

Uncertainties

As we just saw in the “Calculating Weights” section above, there are uncertainties that need to be considered. These uncertainties are actually already taken into account in the .csv file. When looking at the scale factor equation, there should be a main equation followed by either an addition or subtraction of a number, which is the uncertainty.

Uncertainties for Each Flavor

In POET, there are 2 functions for the uncertainty, one for the b tag uncertainty and one for the light flavor tag uncertainty. The reason that there is not one specifically for c tagged jets is because c tagged jet’s uncertainty is two times that of the b tagged jet’s uncertainty, so you can simply multiply the b tag uncertainty call by two, as seen here: SFu = SF + (2 * uncertaintyForBTagSF(corrpt, jet_eta.at(value_jet_n)));

Here is what the b tag uncertainty function looks like, which returns the uncertainty given a jet momentum:

double
PatJetAnalyzer::uncertaintyForBTagSF(double pt, double eta){
 if(fabs(eta) > 2.4 or pt<20.) return 0;
 if(pt < 30) return 0.0466655;
 else if(pt < 40) return 0.0203547;
 else if(pt < 50) return 0.0187707;
 else if(pt < 60) return 0.0250719;
 else if(pt < 70) return 0.023081;
 else if(pt < 80) return 0.0183273;
 else if(pt < 100) return 0.0256502;
 else if(pt < 120) return 0.0189555;
 else if(pt < 160) return 0.0236561;
 else if(pt < 210) return 0.0307624;
 else if(pt < 260) return 0.0387889;
 else if(pt < 320) return 0.0443912;
 else if(pt < 400) return 0.0693573;
 else if(pt < 500) return 0.0650147;
 else return 0.066886;
}

Storing Final Weights

Also from the “Calculating Weights” section, there are 3 final variables that are used to store the final event weights that were calculated:
btagWeight, btagWeightUp , and btagWeightDn. When the file has completed running, you can run root with your output file and look up these 3 names to access the data calculated from your run. Here is an example of these variables accessed in root (Normal - Black, Up - Red, Down - Blue):

[image: ../../../_images/Canvas_1.png]Example

!!! Warning
This page is under construction

Jet Uncertainty

Unsurprisingly, the CMS detector does not measure jet energies perfectly, nor do simulation and data agree perfectly! The measured energy of jet must be corrected so that it can be related to the true energy of its parent particle. These corrections account for several effects and are factorized so that each effect can be studied independently.

Jet Energy Corrections (JEC)

What is JEC?

JEC is the first set of corrections applied on jets that adjust the mean of the response distribution in a series of correction levels.

Correction Levels

[image: ../../../_images/correctionFlow.PNG]Corr Levels

Particles from additional interactions in nearby bunch crossings of the LHC contribute energy in the calorimeters that must somehow be distinguished from the energy deposits of the main interaction. Extra energy in a jet’s cone can make its measured momentum larger than the momentum of the parent particle. The first layer (”L1”) of jet energy corrections accounts for pileup by subtracting the average transverse momentum contribution of the pileup interactions to the jet’s cone area. This average pileup contribution varies by pseudorapidity and, of course, by the number of interactions in the event.

The second and third layers of corrections (”L2L3”) correct the measured momentum to the true momentum as functions of momentum and pseudorapidity, bringing the reconstructed jet in line with the generated jet. These corrections are derived using momentum balancing and missing energy techniques in dijet and Z boson events. One well-measured object (ex: a jet near the center of the detector, a Z boson reconstructed from leptons) is balanced against a jet for which corrections are derived.

All of these corrections are applied to both data and simulation. Data events are then given “residual” corrections to bring data into line with the corrected simulation. A final set of flavor-based corrections are used in certain analyses that are especially sensitive to flavor effects. All of the corrections are described in this paper [https://arxiv.org/pdf/1107.4277.pdf]. The figure below shows the result of the L1+L2+L3 corrections on the jet response.

[image: ../../../_images/responseFlow.PNG]Jet Correction Response

Implementing JEC in CMS Software

JEC From Text Files

There are several methods available for applying jet energy corrections to reconstructed jets. We have demonstrated a method to read in the corrections from text files and extract the corrections manually for each jet. In order to produce these text files, we have to run jec_cfg.py [https://github.com/cms-legacydata-analyses/PhysObjectExtractorTool/blob/master/PhysObjectExtractor/JEC/jec_cfg.py].

isData = False
#if len(sys.argv) > 1: isData = bool(eval(sys.argv[1]))
#print 'Writing JEC text files. isData = ',isData

CMS process initialization
process = cms.Process('jecprocess')
process.load('Configuration.StandardSequences.Services_cff')
process.load('Configuration.StandardSequences.FrontierConditions_GlobalTag_cff')

connect to global tag
if isData:
process.GlobalTag.connect = cms.string('sqlite_file:/cvmfs/cms-opendata-conddb.cern.ch/FT53_V21A_AN6_FULL.db')
 process.GlobalTag.globaltag = 'FT53_V21A_AN6::All'
else:
process.GlobalTag.connect = cms.string('sqlite_file:/cvmfs/cms-opendata-conddb.cern.ch/START53_V27.db')
 process.GlobalTag.globaltag = 'START53_V27::All'

setup JetCorrectorDBReader
process.maxEvents = cms.untracked.PSet(input=cms.untracked.int32(1))
process.source = cms.Source('EmptySource')
process.ak5 = cms.EDAnalyzer('JetCorrectorDBReader',
 payloadName=cms.untracked.string('AK5PF'),
 printScreen=cms.untracked.bool(False),
 createTextFile=cms.untracked.bool(True))

if isData:
 process.ak5.globalTag = cms.untracked.string('FT53_V21A_AN6')
else:
 process.ak5.globalTag = cms.untracked.string('START53_V27')

process.p = cms.Path(process.ak5)

Note that this analyzer will need to be run with both isData = True and isData = False to produce text files for both.

$ cd JEC
$ cmsRun jec_cfg.py
$ #edit the file and flip isData
$ cmsRun jec_cfg.py

Applying JEC Correction

JEC begins in poet_cfg.py [https://github.com/cms-legacydata-analyses/PhysObjectExtractorTool/blob/master/PhysObjectExtractor/python/poet_cfg.py], where we apply jet energy corrections and Type-1 MET corrections on PAT jets, which are a popular object format in CMS that stands for “Physics Analysis Toolkit”. To do this we will load the global tag and databases directly in the configuration file and use the ‘addJetCollection’ process to create a collection of pat::jets.

Note: The JEC Uncertainty text file is needed for the manually created correction uncertainties created inside of the analyzer. Uncertainty will be covered later.

if doPat:
 ...
 # Choose which jet correction levels to apply
 jetcorrlabels = ['L1FastJet','L2Relative','L3Absolute']
 if isData:
 # For data we need to remove generator-level matching processes
 runOnData(process, ['Jets','METs'], "", None, [])
 jetcorrlabels.append('L2L3Residual')

 # Set up the new jet collection
 process.ak5PFJets.doAreaFastjet = True
 addPfMET(process, 'PF')

 addJetCollection(process,cms.InputTag('ak5PFJets'),
 'AK5', 'PFCorr',
 doJTA = True,
 doBTagging = True,
 jetCorrLabel = ('AK5PF', cms.vstring(jetcorrlabels)),
 doType1MET = True,
 doL1Cleaning = True,
 doL1Counters = False,
 doJetID = True,
 jetIdLabel = "ak5",
)
 process.myjets= cms.EDAnalyzer('PatJetAnalyzer',
 InputCollection = cms.InputTag("selectedPatJetsAK5PFCorr"),
 isData = cms.bool(isData),
 jecUncName = cms.FileInPath('PhysObjectExtractorTool/PhysObjectExtractor/JEC/'+JecString+'Uncertainty_AK5PF.txt'),
 jerResName = cms.FileInPath('PhysObjectExtractorTool/PhysObjectExtractor/JEC/JetResolutionInputAK5PF.txt')
)
 ...

Now we can go into PatJetAnalyzer.cc [https://github.com/cms-legacydata-analyses/PhysObjectExtractorTool/blob/master/PhysObjectExtractor/src/PatJetAnalyzer.cc], where in the jet loop of analyzeJets, the correction has already automatically been corrected for each jet. We then save a uncorrected version of the jet as uncorrJet.

for (std::vector<pat::Jet>::const_iterator itjet=myjets->begin(); itjet!=myjets->end(); ++itjet){
 pat::Jet uncorrJet = itjet->correctedJet(0);
 ...

 Object Uncertainty

Object Uncertainty

!!! Warning
This page is under construction

 The CERN Open Data Portal

The CERN Open Data Portal

All CMS open data is available through the CERN Open Data portal [http://opendata.cern.ch/]. The portal hosts data from many experiments and offers search options, such as experiment, type or energy of collisions, type of data (from collisions or simulated), and many more. A brief description of the portal [http://opendata.cern.ch/docs/about] and those of each experiment are available from the “About” dropdown menu top right.

The CERN Open Data portal contains the data records, environment, software and supplementary material to enable research-level use of open data. It also includes some basic documentation and topical guides. For CMS, this Open data guide complements the information available on the portal.

The data records are accessed either using XRootD, which allows the data to be streamed, or through direct http download. A command-line tool cernopendata-client [https://cernopendata-client.readthedocs.io/en/latest/] is also available for data download and inspection.

 CMS Open Data

CMS Open Data

The CMS experiment at CERN has released research-quality data
from particle collisions at the LHC since 2014. Almost all data from the first
LHC run in 2010–2012 (”Run1”) with the corresponding simulated samples are in
the public domain, and several scientific studies have been performed using
these data. First data from the second LHC run in 2015-2018 (”Run2”) have been released in 2021.

Open data are released after an embargo period of six years, which allows the collaboration to understand
the detector performance and to exploit the scientific potential of these data.
This is also necessary for the time needed to reprocess the data with the best available knowledge
before the release.

The first release of each year’s data consists of 50% of the integrated
luminosity recorded by the experiment, and the remaining data will be released within ten
years, unless active analysis is still ongoing. However, the amount of open data will be
limited to 20% of data with the similar centre-of-mass energy and collision type while such
data are still planned to be taken. This approach allows for a fairly prompt release of the data
after a major reprocessing once the reconstruction has been optimised, but still guarantees
that the collaboration will have the opportunity to complete the planned studies with the
complete dataset first.

The open data releases are regulated in the CMS data preservation, re-use and open access policy [http://opendata.cern.ch/record/415].

CERN open data portal includes a brief description [http://opendata.cern.ch/docs/about-cms] about CMS open data and different tools available to analyze them. The main points are:

	the released data are as those used by the CMS collaboration, with all their complexicity

	some CMS-specific software is needed and available to get started with these data

	a computing environment compatible with the data and software needed for their analysis is provided.

The experimental particle physics data are complex and studying them requires a solid understanding of the underlying physics, knowledge of different detector systems involved in data taking, and some mastering of the data handling. Some of these challenges have been addressed in this note [https://www.epj-conferences.org/articles/epjconf/abs/2021/05/epjconf_chep2021_01004/epjconf_chep2021_01004.html], and this guide is part of the measures taken to improve the usability of CMS open data.

 Finding Data

Finding Data

All CMS open data are available through the CERN Open Data portal [http://opendata.cern.ch/].
See the CMS Open data Workshop tutorial lesson [https://cms-opendata-workshop.github.io/workshop2022-lesson-dataset-scouting/] for advice on how to explore available CMS datasets on the CERN Open Data portal.

 CMS Open Data workshops

CMS Open Data workshops

The CMS Open Data group organizes regular workshops to help users get started with the CMS Open Data.

The tutorials of these workshops are available in these links and free to use:

	2020 workshop [https://cms-opendata-workshop.github.io/2020-09-30-cms-open-data-workshop-for-theorists/]

	2021 workshop [https://cms-opendata-workshop.github.io/2021-07-19-cms-open-data-workshop/]

	2022 workshop [https://cms-opendata-workshop.github.io/2022-08-01-cms-open-data-workshop/]

	2023 workshop [https://cms-opendata-workshop.github.io/2023-07-11-cms-open-data-workshop/]

Keep in mind that there may have been updates to the CMS Open Data environments and not all older tutorials work out of the box.

 Analyzers

Analyzers

First, a few general words about analysis in the CMSSW framework. Physics analysis proceeds via a series of subsequent steps. Building blocks are identified and more complex objects are built on top of them. How to write a Framework Module and run the job with the cmsRun can be found here [https://twiki.cern.ch/twiki/bin/view/CMSPublic/WorkBookWriteFrameworkModule].

When setting up code for the new EDM (such as creating a new EDProducer) there is a fair amount of ‘boiler plate’ code that you must write. To make writing such code easier CMS provides a series of scripts that will generate the necessary directory structure and files needed so that all you need to do is write your actual algorithms.

CMSSW distiguishes the following module types [https://twiki.cern.ch/twiki/bin/view/CMSPublic/WorkBookCMSSWFramework#ComponentArch]:

	EDAnalyzer: takes input from the event and processes the input without writing information back to the event

	EDProducer: takes input from the event and produces new output which is saved in the event

	EDFilter: decides if processing the event can be stopped and continued

	EventSetup: external service not bound to the event structure which provides information useable by all modules (e.g. Geometry, Magnetic Field, etc.)

In order to generate above modules:

	mkedanlzr : makes a skeleton of a package containing an EDAnalyzer [https://twiki.cern.ch/twiki/bin/view/CMSPublic/WorkBookCMSSWFramework#ComponentArch]

	mkedprod : makes a skeleton of a package containing an EDProducer [https://twiki.cern.ch/twiki/bin/view/CMSPublic/WorkBookCMSSWFramework#ComponentArch]

	mkedfltr : makes a skeleton of a package containing an EDFilter [https://twiki.cern.ch/twiki/bin/view/CMSPublic/WorkBookCMSSWFramework#ComponentArch]

	mkrecord : makes a complete implementation of a Record used by the EventSetup [https://twiki.cern.ch/twiki/bin/view/CMSPublic/WorkBookMoreOnCMSSWFramework#EventSetupLink]

More generators are available and you can find them here [https://twiki.cern.ch/twiki/bin/view/CMSPublic/SWGuideSkeletonCodeGenerator]

The code examples provided with the CMS open data are mostly EDAnalyzers. A hands-on tutorial to learn more on CMSSW and EDAnalyzers is available in the CMS open data workshop material [https://cms-opendata-workshop.github.io/workshop2021-lesson-cmssw/]. For examples, this guide mainly refers to:

=== “Run 1 Data”

- [Physics Objects Extractor Tool (POET)](https://github.com/cms-opendata-analyses/PhysObjectExtractorTool/tree/2012): shows how to extract physics (objects) information and gives examples of methods or tools needed for processing them. For the sake of clarity, [EDAnalyzer modules](https://github.com/cms-opendata-analyses/PhysObjectExtractorTool/tree/2012/PhysObjectExtractor/src) are provided separately for each object.
- [AOD2NanoAODOutreachTool](https://github.com/cms-opendata-analyses/AOD2NanoAODOutreachTool/tree/2012): reads events from CMS AOD files and convert them to a reduced data format. This example provides a single [EdAnalyzer module](https://github.com/cms-opendata-analyses/AOD2NanoAODOutreachTool/blob/2012/src/AOD2NanoAOD.cc) handling all types of physics objects.

=== “Run 2 Data”

- [Physics Objects Extractor Tool (POET)](https://github.com/cms-opendata-analyses/PhysObjectExtractorTool/tree/2015MiniAOD): shows how to extract physics (objects) information and gives examples of methods or tools needed for processing them. For the sake of clarity, [EDAnalyzer modules](https://github.com/cms-opendata-analyses/PhysObjectExtractorTool/tree/2015MiniAOD/PhysObjectExtractor/src) are provided separately for each object.

 Conditions

Conditions

This page explains the use of global tags and the condition database with the CMS Open Data. All information was taken from here [http://opendata.cern.ch/docs/cms-guide-for-condition-database].

A Global Tag is a coherent collection of records of additional data needed by the reconstruction and analysis software.
The Global Tag is defined for each data-taking period, separately for collision and simulated data.

These records are stored in the condition database. Condition data include non-event-related information (Alignment, Calibration, Temperature, etc.) and parameters for the simulation/reconstruction/analysis software. For CMS Open Data, the condition data are provided as sqlite files in the /cvmfs/cms-opendata-conddb.cern.ch/ directory, which is accessible through the CMS Open Data VM.

Most physics objects [http://opendata.cern.ch/docs/cms-physics-objects-2011] such as electrons, muons, photons in the CMS Open Data are already calibrated and ready-to-use, and no additional corrections are needed other than selection and identification criteria, which will be applied in the analysis code. Therefore, simple analyses do not need to access the condition database. For example you can check the Higgs analysis example [http://opendata.cern.ch/record/5500].

However, access to the condition database is necessary, for example, for jet energy corrections and trigger configuration information. Examples of such analyses are for the PAT object production [http://opendata.cern.ch/record/233] or the top quark pair production [http://opendata.cern.ch/record/5000].

Note that when you need to access the condition database, the first time you run the job on the CMS Open Data VM, it will download the condition data from the /cvmfs area. It will take time (an example run of a 10 Mbps line took 45 mins), but it will only happen once as the files will be cached on your VM. The job will not produce any output during this time, but you can check the ongoing processes with the command ‘top’ and you can monitor the progress of reading the condition data to the local cache with the command ‘df’.

Collision data and Monte Carlo data sets can be found at http://opendata.cern.ch/docs/cms-guide-for-condition-database for years 2010, 2011 and 2012.

!!! Warning
This page is under construction

 Configuration

Configuration

A configuration document, written using the Python language, is used to configure the cmsRun executable. A Python configuration program specifies which modules, inputs, outputs and services are to be loaded during execution, how to configure these modules and services, and in what order to execute them. More information can be found at the CMS software guide [https://twiki.cern.ch/twiki/bin/view/CMSPublic/SWGuideAboutPythonConfigFile].

The hands-on tutorial on CMSSW available in the CMS open data workshop material includes a detailed lesson on CMSSW configuration files [https://cms-opendata-workshop.github.io/workshop2021-lesson-cmssw/05_configuration/index.html].

The configuration files for the examples that this guide mainly refers to can be found in:

=== “Run 1 Data”

- [Physics Objects Extractor Tool (POET) configuration file](https://github.com/cms-opendata-analyses/PhysObjectExtractorTool/blob/2012/PhysObjectExtractor/python/poet_cfg.py): a single configuration file where options to process data or MC (or other processing algorithm choices) is done through input arguments.
- AOD2NanoAODOutreachTool configuration files for [data](https://github.com/cms-opendata-analyses/AOD2NanoAODOutreachTool/blob/2012/configs/data_cfg.py) and [MC](https://github.com/cms-opendata-analyses/AOD2NanoAODOutreachTool/blob/2012/configs/simulation_cfg.py).

=== “Run 2 Data”

- [Physics Objects Extractor Tool (POET) configuration file](https://github.com/cms-opendata-analyses/PhysObjectExtractorTool/blob/2015MiniAOD/PhysObjectExtractor/python/poet_cfg.py): a single configuration file where options to process data or MC (or other processing algorithm choices) is done through input arguments.

 Data Model

Data Model

The CMS Event Data Model (EDM) is centered around the concept of an Event. Physically, an event is the result of a single readout of the detector electronics and the signals that will (in general) have been generated by particles, tracks, energy deposits, present in a number of bunch crossings.

In software terms, an Event starts as a collection of the RAW data from a detector or MC event, stored as a single entity in memory, a C++ type-safe container called edm::Event. An Event is a C++ object container for all RAW and reconstructed data related to a particular collision. During processing, data are passed from one module to the next via the Event, and are accessed only through the Event. All objects in the Event may be individually or collectively stored in ROOT [https://root.cern/] files, and are thus directly browsable in ROOT.

More and detailed information can be found here [https://twiki.cern.ch/twiki/bin/view/CMSPublic/WorkBookCMSSWFramework#AboutEvents].

The CMS Data Hierarchy

CMS Data is arranged into a hierarchy of data tiers. Each physics event is written into each data tier, where the tiers each contain different levels of information about the event. The different tiers each have different uses. The three main data tiers written in CMS are:

	RAW: full event information from the Tier-0 (i.e. from CERN), containing ‘raw’ detector information (detector element hits, etc)

	RAW is not used directly for analysis

	RECO (”RECOnstructed data”): the output from first-pass processing by the Tier-0. This layer contains reconstructed physics objects, but it’s still very detailed.

	RECO can be used for analysis, but is too big for frequent or heavy use when CMS has collected a substantial data sample.

	RECO Data Format Table [https://twiki.cern.ch/twiki/bin/view/CMSPublic/SWGuideRecoDataTable]

	AOD (”Analysis Object Data”): this is a “distilled” version of the RECO event information, and was used for most analyses on Run 1 data.

	AOD provides a trade-off between event size and complexity of the available information to optimize flexibility and speed for analyses.

	AOD Data Format Table [https://twiki.cern.ch/twiki/bin/view/CMSPublic/SWGuideAodDataTable]

	MINIAOD: slimmer version of AOD, used for analyses on Run 2 data.

	MINIAOD is approximately one tenth of the size of AOD.

	The reduction is obtained defining light-weight physics-object candidate representations, increasing transverse momentum thresholds for storing physics-object candidates, and reduced numerical precision when it is not required at the analysis level.

	MINIAOD physics objects table [https://twiki.cern.ch/twiki/bin/view/CMSPublic/WorkBookMiniAOD2015#High_level_physics_objects]

The data tiers are described in more detail in a dedicated WorkBook chapter on Data Formats and Tiers [https://twiki.cern.ch/twiki/bin/view/CMSPublic/WorkBookDataFormats].

 Overview

Overview

The overall collection of software, referred to as CMS Software (CMSSW), is built around a Framework, an Event Data Model (EDM), and Services needed by the simulation, calibration and alignment, and reconstruction modules that process event data so that physicists can perform analysis. The primary goal of the Framework and EDM is to facilitate the development and deployment of reconstruction and analysis software.

The CMSSW event processing model consists of one executable, called cmsRun, and many plug-in modules which are managed by the Framework. All the code needed in the event processing (calibration, reconstruction algorithms, etc.) is contained in the modules. The same executable is used for both detector and Monte Carlo data. More and detailed information can be found here [https://twiki.cern.ch/twiki/bin/view/CMSPublic/WorkBookCMSSWFramework].

 C++ and python

C++ and python

CMS primarily uses C++ and python to analyze data. Here are some computing tutorials.

C++

	Basic Modern C++ [https://hsf-training.github.io/hsf-training-cpp-webpage/]

	cplusplus.com [http://cplusplus.com/]

Python

	Programming with Python [https://swcarpentry.github.io/python-novice-inflammation/]

	Plotting and Programming in Python [https://swcarpentry.github.io/python-novice-gapminder/]

 Docker

Docker

!!! Warning
This page is under construction

Docker [https://www.docker.com/] is a commercial implementation
of a container [https://www.docker.com/resources/what-container], a way to package
up a snapshot of everything needed to run some particular version
of software (OS, libraries, compilers, etc.). It is a very effective
way of interfacing with the CMS open data as it gives you the proper
environment you need to analyze these data.

To learn more about Docker in general, from a HEP perspective, you
may want to check out this
Introduction to Docker [https://awesome-workshop.github.io/intro-to-docker/],
from Matthew Feickert.

To account for the different running conditions in Run 1 vs Run 2, click the appropriate tab below for Run 1 vs Run 2 data.

=== “Run 1 Data”

* You can find the list of Docker container images available for CMS open data in [the guide page for CMS open data containers](http://opendata.cern.ch/docs/cms-guide-docker)
* You can also jump right in with the most recent tutorial on [the CMS open data containers](https://cms-opendata-workshop.github.io/workshop2023-lesson-docker/). If the tutorial is for more recent data, make sure to change the container image to correspond to the Run 1 data you intend to analyse.

=== “Run 2 Data”

* You can find the list of Docker container images available for CMS open data in [the guide page for CMS open data containers](http://opendata.cern.ch/docs/cms-guide-docker)
* You can also jump right in with the most recent tutorial on [the CMS open data containers](https://cms-opendata-workshop.github.io/workshop2023-lesson-docker/).

 Git

Git

Git [https://git-scm.com/] is an open-source distributed version control system.

Here are some helpful links to learn how to use git.

	Version Control with Git [https://swcarpentry.github.io/git-novice/]

	Pro Git Book [http://git-scm.com/book/en/v2]

	git reference [https://git-scm.com/docs]

 ROOT

ROOT

!!! Warning
This page is under construction

From ROOT’s webpage [https://root.cern.ch]

A modular scientific software toolkit.
It provides all the functionalities needed to deal with big data processing,
statistical analysis, visualisation and storage.
It is mainly written in C++ but integrated with other languages such as Python and R.

It is the primary toolkit for many experimental analysis and while you are
free to analyze these datasets however you like, some familiarity with
ROOT will serve you well when accessing the data.

To get started analyzing data with ROOT and C++, start with C++ and ROOT [https://cms-opendata-workshop.github.io/workshop2021-lesson-preexercise-cpp-and-root/]. A ROOT installation comes with the virtual machine and/or docker installation pointed to in this guide.

To learn more about ROOT, see the ROOT Manual [https://root.cern/manual/basics/].

	Many ROOT examples can be found here [https://root.cern/tutorials/]. If you don’t know where to start, we would recommend

	fillrandom.C [https://root.cern/doc/master/fillrandom_8C.html] - fill in a 1D histogram from a parametric function

	basic.C [https://root.cern/doc/master/basic_8C.html] - read in data and create a root file

	h1ReadAndDraw.c [https://root.cern/doc/master/h1ReadAndDraw_8C.html] - read in a 1D histogram from a ROOT file, and then draw the histogram

	draw2dopt.C [https://root.cern/doc/master/draw2dopt_8C.html] - explore 2D drawing options

	Python has become the language of choice for many analysts and most of the examples
you’ll see make use of the PyROOT module, callable from python. For more on pyROOT, see Python interface: PyROOT [https://root.cern/manual/python/]. You can go through a number of examples here [https://root.cern.ch/doc/master/group__tutorial__pyroot.html].
If you don’t know where to start, we would recommend

	hsimple.py [https://root.cern.ch/doc/master/hsimple_8py.html] - create and draw histograms

	fillrandom.py [https://root.cern.ch/doc/master/pyroot_2fillrandom_8py.html] - fill in a 1D histogram from a parametric function, and save your output as a root file

	fit1.py [https://root.cern.ch/doc/master/fit1_8py.html] - open the root file created from fillrandom.py, and do a fit

 Unix

Unix

The unix shell provides a command-line interpreter. The shell provides an interface between the user and the kernel. The shell will pass your commands to the operating system. Mastering basic shell commands will help you speed up and automate a variety of tasks.

You can get started with unix by working through the exercises in The Unix Shell [https://swcarpentry.github.io/shell-novice/].

More advanced material is available in Extra Unix Shell Material [https://carpentries-incubator.github.io/shell-extras/].

A linux commmand line tutorial focused on ubuntu is available at The Linux command line for beginners [https://ubuntu.com/tutorials/command-line-for-beginners#1-overview].

 Virtual machines

Virtual machines

CMS open data and legacy data, even though still exciting and full of potential, are already a few years old. Because of the rapidly evolving technolgies, the computing environments that were used to analyze these data are already ancient compared to the current, bleeding edge ones.

Therefore, in order to mantain our ability to study these data, we have to rely on technologies that help us preserve adequate computer environments. One way of doing this is by using virtual machines.

In simple words, a virtual machine [https://en.wikipedia.org/wiki/Virtual_machine] is an emulation of a computer system that can run within another system. The latter is usually known as the host.

Open data releases, CMSSW versions and operating systems

CMS open data from our 2010 release can be studied using CMSSW_4_2_8, a version of the CMSSW software that used to run under Scientific Linux CERN 5 (slc5) operating system. Likewise, open data from our 2011/2012 release used CMSSW_5_3_32 and those from 2015 release CMSSW_7_6_7 under Scientific Linux CERN 6 (slc6).

The virtual machines that are used to analyze these data, therefore, need to consider all these compatibility subtleties.

Virtual machine images

In practical terms, a virtual machine image is a computer file that has all the right ingredients to create a virtual computer inside a given host. This file, however, needs to be decoded by a virtual machine interpreter, usually known as hypervisor [https://en.wikipedia.org/wiki/Hypervisor], which runs on the host machine. One of the most famous hypervisors is Oracle’s VirtualBox [https://en.wikipedia.org/wiki/VirtualBox].

CMS virtual images

The most current images for CMS open data usage are described separately in the CERN Open Portal site for 2010 [http://opendata.cern.ch/record/250] and 2011/2012/2015 [http://opendata.cern.ch/record/252]. They come equiped with the ROOT [http://root.cern.ch/] framework, CMSSW [http://cms-sw.github.io/] and CVMFS [https://cvmfs.readthedocs.io/en/stable/index.html] access.

!!! Note “Remember”
When installing a CMS virtual machine (following the instructions below), always use the latest image file available for 2010 [http://opendata.cern.ch/record/250] or 2011/2012/2015 [http://opendata.cern.ch/record/252] data.

Installation

Detailed instructions on how to install the CERN virtual machines can be found in the 2010 [http://opendata.cern.ch/docs/cms-virtual-machine-2010], 2011/2012 [http://opendata.cern.ch/docs/cms-virtual-machine-2011] and 2015 [http://opendata.cern.ch/docs/cms-virtual-machine-2015] virtual machine installation guides from the CERN Open Portal. Choose the one to follow depending on the data release you will be working on.

In summary, the basic steps are as follows:

	Download and install the latest (or even better, the latest tested) version of VirtualBox [https://www.virtualbox.org/wiki/Downloads]. Note that it is available for an ample range of platforms.

	Download the latest CMS virtual image file. Choose between 2010 [http://opendata.cern.ch/docs/cms-virtual-machine-2010#downloading-and-creating-a-virtual-machine] or 2011/2012 [http://opendata.cern.ch/docs/cms-virtual-machine-2011#downloading-and-creating-a-virtual-machine], depending on the data release of interest. Once downloaded, import the image file into VirtualBox.

!!! Note “Remember”
Always use the latest image file available for 2010 [http://opendata.cern.ch/record/250] or 2011/2012/2015 [http://opendata.cern.ch/record/252]. Older ones are usually deprecated.

	Test the environment; again, 2010 [http://opendata.cern.ch/docs/cms-virtual-machine-2010#step-2-how-to-test-validate], 2011/2012 [http://opendata.cern.ch/docs/cms-virtual-machine-2011#step-2-how-to-test-validate] and 2015 [http://opendata.cern.ch/docs/cms-virtual-machine-2015#step-2-how-to-test-validate], depending on the release.

	Finally, check for any known issues or limitations (2010 [http://opendata.cern.ch/docs/cms-virtual-machine-2010#known-issues-limitations], 2011/2012 [http://opendata.cern.ch/docs/cms-virtual-machine-2011#known-issues-limitations], 2015 [http://opendata.cern.ch/docs/cms-virtual-machine-2015#known-issues-limitations].)

_images/Muon_Phi_Tracker_Probe_Efficiency.png
Efficiency of Tracker Muon Probe

CMS Open Data —— Jly Data Sideband
—-— J/y MC Sideband

1

%

0.95

0.9

0.85

T N O I IS AN AR AA B
08 -3 -2 -1 0 1 2 3

¢ lrad)

_images/Muon_Phi_Tracker_Probe_Efficiency1.png
Efficiency of Tracker Muon Probe

CMS Open Data —=— J/y Data Fitting
—=— Jiy MC Fitting

1

%i

0.95

0.9

0.85

co v b b e b b L L
08 -3 -2 -1 0 1 2 3
olrad)

_images/Muon_Eta_Tracker_Probe_Efficiency.png
Efficiency of Tracker Muon Probe

CMS Open Data —— Jly Data Sideband
—-— J/y MC Sideband

1

0.95

0.9

0.85

0.8

_images/Muon_Eta_Tracker_Probe_Efficiency1.png
1

0.95

0.9

0.85

0.8

Efficiency of Tracker Muon Probe

CMS Open Data —=— J/y Data Fitting
—=— Jiy MC Fitting

_images/Sys_Efficiency_overplot1d.png
Efficiency for trackerMuon Pt

Efficiency

—— Nominal
—+2x Gauss
—+Mass Up
~+ Mass Down
—+Bin Up

—— Bin Down

p. [GeVid]

_images/Sys_Efficiency_overplot2d.png
Efficiency for trackerMuon (Final)

Fasast 0992655 0386575 _ 098056
330853 0289673 0.0913647 - 00787964

140

Fesses oa7sits os7rrss agmarse
1269733 00185444 0210473 £ 00764810
1.2
Bianss_os7rsss ossses oaenrs
Jlpowerss oizst aoresos *Goremoz

0.880877 osmsssr_ossoras oanssrs
) Botosomnausmsdsooies L oarizias

0.6
Faosez 0992137 0391348 _ 0985365
76613 00117762 00123352 £ 00145029

0.4

0,218 osnuzsy aemsn agevses
2 Eioroan cosst2ad caserer © 0 0v0zea

0 L M

osssuzn
£oassoar

osssns
$ookzaos

osronss
$oozzmn

osssssz
Sooiezns

osssrs
& 5ozieonr

oss7o0s
rrteay

Entries 72
Meanx 7.895
Meany 09674
Std Devx 7.453

Std Dev y 0.5568

—0.85

0.8

0.75

0.7

0.65

p, [GeVic]

_images/Muon_Pt_Tracker_Probe_Efficiency.png
Efficiency

0.9

0.8

07

06

0.5

Efficiency of Tracker Muon Probe

CMS Open Data —— Jly Data Sideband
—-— J/y MC Sideband

ST

\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\
25

5 40
p, [Gevic]

_images/Muon_Pt_Tracker_Probe_Efficiency1.png
Efficiency of Tracker Muon Probe

Efficiency

=)

E cMS Open Data ——— Jjy Data Fiting

= —— J/y MG Fitting

ey

:wwww\wwww\wwww\wwww\wwww\wwww\wwww\wwww
5 10 15 20 25 30

35 40
P, [GeVic]

_images/TauDecayPiChart.png
Leptonic (u) : 17.41

Leptonic (e) : 17.83

Hadronic : 64.76

M Hadronic M Leptonic (e) Leptonic (u)

nav.xhtml

 Table of Contents

 		
 CMS Open Data Guide

_images/antikt.png

_images/c1.png
Effciency of DeepJet Medium

BEifiod_Npibins b

Entries 87239

Mean 2195
RMS 2579
[—
+ I
700 600 800 1000 1200

AKd jet p_ [GeV]

_images/cluster_eq.png
dij = min(pp}. pr5) AR, /R?

Combine when d;; < p,;f ; stop when d;; > p;f

_images/clustering.png
Initial Combine the 2 particles
combine the protojets with smallest dij)

Continue iteratively combining particles (at each step

particles with smallest djj
. .o Y c e - e .
o o @e Qe o
o, ® = ® = ® ° °
o..., o..-. o.... P .-'2">..0 K
[1 [X [X () Qe
c e c e c e Y . e

. ° ° ° . .0
o [o o ©O°
©_ -0 -0 "o
[[o LD
‘1? :tdiB Found 4 4 jets, each with N
op jets constituents

clustering

_images/files_sideband.png
&} &

main JPsiToMuM README. Run2011A
u md MuOnia_
mergeM... mergeNt...

_images/fitting_method_large.png
Fit Invariant Mass on Selected Region
All

2 ..

=

: R
Select re ion % 1400 - - backgroun
g ‘% 1200

4 o0 Compute Efficiency

o)

T[T [T T [T [T[T T

E 1
: M \
R o Yield
b l | e e 1] ! Pass
F 2 94 96 98 10 102 104 106 108 11
I , | w*y’ invariant mass [GeV/c?]
a | Passing 5 R
F - Dat —
e S o ~ e
T (/e = - Peak2 .
e 2 o
g 1000 .- Eaeglfg?ound Yleld
£ 1400
all

1200

1000

EATIN TP S T N T TP
9.8 10 10.2 10.4 106 10.8 1
w* invariant mass [GeV/c?]

_images/fitting_tbrowser.png
ROOT Object Browser

Browser | Elle Edit View Options Tools Help
Fles | Canvas_1 (] Editor 1 x|
4, ¥ & Dawopton| [5] Efficiency for trackerMuon Pt
B 7 F
(1PROOF Sessions s
&3R00T Fies B
5 9P racketion oot
(Ensiograms
[} rackerthson_ Pt Effcency:1 0ss
=]
>
os8 —
—
087
> t
05
Cooiuy | | | | | | |
R R)
o {Gevic]
Command |
Command (local): [
Filter: [ATl Files (* 2]
[4

_images/muons_id.png

_images/main_structure.png
5
|

Pass Al

hSigBack

nBack hsig

Sideband Subtraction

Type

InvariantMass

TagProbe

PiEtaPhi

PassingFailing

_images/mass_structure.png
Mass

InvariantMass

MassValues

nMass|

nMass|

_images/tbrowser0.png
ROOT Object Browser